Made test program generate symmetric matrices.

stopcriterion
Salvatore Filippone 7 years ago
parent d6e990b04c
commit 8ee76a1a82

@ -92,20 +92,30 @@ contains
!
! functions parametrizing the differential equation
!
!
!
! Note: b1 and b2 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2 functions to e.g. done/sqrt((2*done))
!
function b1(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y
b1=done/sqrt((2*done))
b1=dzero
end function b1
function b2(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y
b2=done/sqrt((2*done))
b2=dzero
end function b2
function c(x,y)
use psb_base_mod, only : psb_dpk_, done, dzero

@ -95,26 +95,36 @@ contains
!
! functions parametrizing the differential equation
!
!
! Note: b1, b2 and b3 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2/B3 functions to e.g. done/sqrt((3*done))
!
function b1(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b1
real(psb_dpk_), intent(in) :: x,y,z
b1=done/sqrt((3*done))
b1=dzero
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b2
real(psb_dpk_), intent(in) :: x,y,z
b2=done/sqrt((3*done))
b2=dzero
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero
implicit none
real(psb_dpk_) :: b3
real(psb_dpk_), intent(in) :: x,y,z
b3=done/sqrt((3*done))
b3=dzero
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_dpk_, done, dzero

@ -92,20 +92,30 @@ contains
!
! functions parametrizing the differential equation
!
!
!
! Note: b1 and b2 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2 functions to e.g. sone/sqrt((2*sone))
!
function b1(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y
b1=sone/sqrt((2*sone))
b1=szero
end function b1
function b2(x,y)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y
b2=sone/sqrt((2*sone))
b2=szero
end function b2
function c(x,y)
use psb_base_mod, only : psb_spk_, sone, szero

@ -95,26 +95,36 @@ contains
!
! functions parametrizing the differential equation
!
!
! Note: b1, b2 and b3 are the coefficients of the first
! derivative of the unknown function. The default
! we apply here is to have them zero, so that the resulting
! matrix is symmetric/hermitian and suitable for
! testing with CG and FCG.
! When testing methods for non-hermitian matrices you can
! change the B1/B2/B3 functions to e.g. sone/sqrt((3*sone))
!
function b1(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b1
real(psb_spk_), intent(in) :: x,y,z
b1=sone/sqrt((3*sone))
b1=szero
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b2
real(psb_spk_), intent(in) :: x,y,z
b2=sone/sqrt((3*sone))
b2=szero
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero
implicit none
real(psb_spk_) :: b3
real(psb_spk_), intent(in) :: x,y,z
b3=sone/sqrt((3*sone))
b3=szero
end function b3
function c(x,y,z)
use psb_base_mod, only : psb_spk_, sone, szero

Loading…
Cancel
Save