Integration of psb_ilu & friends

implement-ainv
Salvatore Filippone 4 years ago
parent 68a4ee9cd4
commit 90e1f1cfe6

@ -397,7 +397,7 @@ contains
call precp%descr() call precp%descr()
call flush(output_unit) call flush(psb_out_unit)
info = 0 info = 0
res = MLDC_ERR_FILTER(info) res = MLDC_ERR_FILTER(info)

@ -397,7 +397,7 @@ contains
call precp%descr() call precp%descr()
call flush(output_unit) call flush(psb_out_unit)
info = 0 info = 0
res = MLDC_ERR_FILTER(info) res = MLDC_ERR_FILTER(info)

@ -7,7 +7,7 @@ HERE=.
FINCLUDES=$(FMFLAG)$(HERE) $(FMFLAG)$(INCDIR) $(PSBLAS_INCLUDES) FINCLUDES=$(FMFLAG)$(HERE) $(FMFLAG)$(INCDIR) $(PSBLAS_INCLUDES)
DMODOBJS=mld_d_prec_type.o mld_d_ilu_fact_mod.o \ DMODOBJS=mld_d_prec_type.o \
mld_d_inner_mod.o mld_d_ilu_solver.o mld_d_diag_solver.o mld_d_jac_smoother.o mld_d_as_smoother.o \ mld_d_inner_mod.o mld_d_ilu_solver.o mld_d_diag_solver.o mld_d_jac_smoother.o mld_d_as_smoother.o \
mld_d_umf_solver.o mld_d_slu_solver.o mld_d_sludist_solver.o mld_d_id_solver.o\ mld_d_umf_solver.o mld_d_slu_solver.o mld_d_sludist_solver.o mld_d_id_solver.o\
mld_d_base_solver_mod.o mld_d_base_smoother_mod.o mld_d_onelev_mod.o \ mld_d_base_solver_mod.o mld_d_base_smoother_mod.o mld_d_onelev_mod.o \
@ -125,8 +125,8 @@ mld_s_base_solver_mod.o mld_d_base_solver_mod.o mld_c_base_solver_mod.o mld_z_ba
mld_d_mumps_solver.o mld_d_gs_solver.o mld_d_id_solver.o mld_d_sludist_solver.o mld_d_slu_solver.o \ mld_d_mumps_solver.o mld_d_gs_solver.o mld_d_id_solver.o mld_d_sludist_solver.o mld_d_slu_solver.o \
mld_d_umf_solver.o mld_d_diag_solver.o mld_d_ilu_solver.o: mld_d_base_solver_mod.o mld_d_prec_type.o mld_d_umf_solver.o mld_d_diag_solver.o mld_d_ilu_solver.o: mld_d_base_solver_mod.o mld_d_prec_type.o
mld_d_ilu_fact_mod.o: mld_base_prec_type.o mld_d_base_solver_mod.o #mld_d_ilu_fact_mod.o: mld_base_prec_type.o mld_d_base_solver_mod.o
mld_d_ilu_solver.o mld_d_iluk_fact.o: mld_d_ilu_fact_mod.o #mld_d_ilu_solver.o mld_d_iluk_fact.o: mld_d_ilu_fact_mod.o
mld_d_as_smoother.o mld_d_jac_smoother.o: mld_d_base_smoother_mod.o mld_d_as_smoother.o mld_d_jac_smoother.o: mld_d_base_smoother_mod.o
mld_d_jac_smoother.o: mld_d_diag_solver.o mld_d_jac_smoother.o: mld_d_diag_solver.o
mld_dprecinit.o mld_dprecset.o: mld_d_diag_solver.o mld_d_ilu_solver.o \ mld_dprecinit.o mld_dprecset.o: mld_d_diag_solver.o mld_d_ilu_solver.o \

@ -164,7 +164,7 @@ subroutine mld_c_base_onelev_cseti(lv,what,val,info,pos,idx)
case (mld_bwgs_) case (mld_bwgs_)
call lv%set(mld_c_bwgs_solver_mold,info,pos=pos) call lv%set(mld_c_bwgs_solver_mold,info,pos=pos)
case (mld_ilu_n_,mld_milu_n_,mld_ilu_t_) case (psb_ilu_n_,psb_milu_n_,psb_ilu_t_)
call lv%set(mld_c_ilu_solver_mold,info,pos=pos) call lv%set(mld_c_ilu_solver_mold,info,pos=pos)
if (info == 0) then if (info == 0) then
if ((ipos_==mld_smooth_pre_) .or.(ipos_==mld_smooth_both_)) then if ((ipos_==mld_smooth_pre_) .or.(ipos_==mld_smooth_both_)) then

@ -176,7 +176,7 @@ subroutine mld_d_base_onelev_cseti(lv,what,val,info,pos,idx)
case (mld_bwgs_) case (mld_bwgs_)
call lv%set(mld_d_bwgs_solver_mold,info,pos=pos) call lv%set(mld_d_bwgs_solver_mold,info,pos=pos)
case (mld_ilu_n_,mld_milu_n_,mld_ilu_t_) case (psb_ilu_n_,psb_milu_n_,psb_ilu_t_)
call lv%set(mld_d_ilu_solver_mold,info,pos=pos) call lv%set(mld_d_ilu_solver_mold,info,pos=pos)
if (info == 0) then if (info == 0) then
if ((ipos_==mld_smooth_pre_) .or.(ipos_==mld_smooth_both_)) then if ((ipos_==mld_smooth_pre_) .or.(ipos_==mld_smooth_both_)) then

@ -164,7 +164,7 @@ subroutine mld_s_base_onelev_cseti(lv,what,val,info,pos,idx)
case (mld_bwgs_) case (mld_bwgs_)
call lv%set(mld_s_bwgs_solver_mold,info,pos=pos) call lv%set(mld_s_bwgs_solver_mold,info,pos=pos)
case (mld_ilu_n_,mld_milu_n_,mld_ilu_t_) case (psb_ilu_n_,psb_milu_n_,psb_ilu_t_)
call lv%set(mld_s_ilu_solver_mold,info,pos=pos) call lv%set(mld_s_ilu_solver_mold,info,pos=pos)
if (info == 0) then if (info == 0) then
if ((ipos_==mld_smooth_pre_) .or.(ipos_==mld_smooth_both_)) then if ((ipos_==mld_smooth_pre_) .or.(ipos_==mld_smooth_both_)) then

@ -176,7 +176,7 @@ subroutine mld_z_base_onelev_cseti(lv,what,val,info,pos,idx)
case (mld_bwgs_) case (mld_bwgs_)
call lv%set(mld_z_bwgs_solver_mold,info,pos=pos) call lv%set(mld_z_bwgs_solver_mold,info,pos=pos)
case (mld_ilu_n_,mld_milu_n_,mld_ilu_t_) case (psb_ilu_n_,psb_milu_n_,psb_ilu_t_)
call lv%set(mld_z_ilu_solver_mold,info,pos=pos) call lv%set(mld_z_ilu_solver_mold,info,pos=pos)
if (info == 0) then if (info == 0) then
if ((ipos_==mld_smooth_pre_) .or.(ipos_==mld_smooth_both_)) then if ((ipos_==mld_smooth_pre_) .or.(ipos_==mld_smooth_both_)) then

@ -181,8 +181,8 @@ subroutine mld_c_smoothers_bld(a,desc_a,prec,info,amold,vmold,imold)
& ' but it has been changed to distributed.' & ' but it has been changed to distributed.'
end if end if
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
if (prec%precv(iszv)%sm%sv%get_id() /= mld_ilu_n_) then if (prec%precv(iszv)%sm%sv%get_id() /= psb_ilu_n_) then
write(psb_err_unit,*) & write(psb_err_unit,*) &
& 'MLD2P4: Warning: original coarse solver was requested as ',& & 'MLD2P4: Warning: original coarse solver was requested as ',&
& mld_fact_names(coarse_solve_id) & mld_fact_names(coarse_solve_id)

@ -198,7 +198,7 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
#elif defined(HAVE_MUMPS_) #elif defined(HAVE_MUMPS_)
call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
#endif #endif
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info)
case(mld_slu_) case(mld_slu_)
@ -212,10 +212,10 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos)
@ -226,7 +226,7 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_umf_) case(mld_umf_)
@ -240,7 +240,7 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
@ -255,7 +255,7 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_jac_) case(mld_jac_)
@ -344,7 +344,7 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
#elif defined(HAVE_MUMPS_) #elif defined(HAVE_MUMPS_)
call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
#endif #endif
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info)
case(mld_slu_) case(mld_slu_)
@ -358,10 +358,10 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos)
@ -372,7 +372,7 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_umf_) case(mld_umf_)
@ -386,7 +386,7 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
@ -401,7 +401,7 @@ subroutine mld_ccprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_jac_) case(mld_jac_)

@ -181,8 +181,8 @@ subroutine mld_d_smoothers_bld(a,desc_a,prec,info,amold,vmold,imold)
& ' but it has been changed to distributed.' & ' but it has been changed to distributed.'
end if end if
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
if (prec%precv(iszv)%sm%sv%get_id() /= mld_ilu_n_) then if (prec%precv(iszv)%sm%sv%get_id() /= psb_ilu_n_) then
write(psb_err_unit,*) & write(psb_err_unit,*) &
& 'MLD2P4: Warning: original coarse solver was requested as ',& & 'MLD2P4: Warning: original coarse solver was requested as ',&
& mld_fact_names(coarse_solve_id) & mld_fact_names(coarse_solve_id)

@ -206,7 +206,7 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
#elif defined(HAVE_MUMPS_) #elif defined(HAVE_MUMPS_)
call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
#endif #endif
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info)
case(mld_slu_) case(mld_slu_)
@ -220,10 +220,10 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos)
@ -234,7 +234,7 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_umf_) case(mld_umf_)
@ -252,7 +252,7 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
@ -275,7 +275,7 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_jac_) case(mld_jac_)
@ -366,7 +366,7 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
#elif defined(HAVE_MUMPS_) #elif defined(HAVE_MUMPS_)
call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
#endif #endif
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info)
case(mld_slu_) case(mld_slu_)
@ -380,10 +380,10 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos)
@ -394,7 +394,7 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_umf_) case(mld_umf_)
@ -412,7 +412,7 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
@ -435,7 +435,7 @@ subroutine mld_dcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_jac_) case(mld_jac_)

@ -181,8 +181,8 @@ subroutine mld_s_smoothers_bld(a,desc_a,prec,info,amold,vmold,imold)
& ' but it has been changed to distributed.' & ' but it has been changed to distributed.'
end if end if
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
if (prec%precv(iszv)%sm%sv%get_id() /= mld_ilu_n_) then if (prec%precv(iszv)%sm%sv%get_id() /= psb_ilu_n_) then
write(psb_err_unit,*) & write(psb_err_unit,*) &
& 'MLD2P4: Warning: original coarse solver was requested as ',& & 'MLD2P4: Warning: original coarse solver was requested as ',&
& mld_fact_names(coarse_solve_id) & mld_fact_names(coarse_solve_id)

@ -198,7 +198,7 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
#elif defined(HAVE_MUMPS_) #elif defined(HAVE_MUMPS_)
call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
#endif #endif
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info)
case(mld_slu_) case(mld_slu_)
@ -212,10 +212,10 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos)
@ -226,7 +226,7 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_umf_) case(mld_umf_)
@ -240,7 +240,7 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
@ -255,7 +255,7 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_jac_) case(mld_jac_)
@ -344,7 +344,7 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
#elif defined(HAVE_MUMPS_) #elif defined(HAVE_MUMPS_)
call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
#endif #endif
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info)
case(mld_slu_) case(mld_slu_)
@ -358,10 +358,10 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos)
@ -372,7 +372,7 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_umf_) case(mld_umf_)
@ -386,7 +386,7 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
@ -401,7 +401,7 @@ subroutine mld_scprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_jac_) case(mld_jac_)

@ -181,8 +181,8 @@ subroutine mld_z_smoothers_bld(a,desc_a,prec,info,amold,vmold,imold)
& ' but it has been changed to distributed.' & ' but it has been changed to distributed.'
end if end if
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
if (prec%precv(iszv)%sm%sv%get_id() /= mld_ilu_n_) then if (prec%precv(iszv)%sm%sv%get_id() /= psb_ilu_n_) then
write(psb_err_unit,*) & write(psb_err_unit,*) &
& 'MLD2P4: Warning: original coarse solver was requested as ',& & 'MLD2P4: Warning: original coarse solver was requested as ',&
& mld_fact_names(coarse_solve_id) & mld_fact_names(coarse_solve_id)

@ -206,7 +206,7 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
#elif defined(HAVE_MUMPS_) #elif defined(HAVE_MUMPS_)
call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
#endif #endif
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info)
case(mld_slu_) case(mld_slu_)
@ -220,10 +220,10 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos)
@ -234,7 +234,7 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_umf_) case(mld_umf_)
@ -252,7 +252,7 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
@ -275,7 +275,7 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_jac_) case(mld_jac_)
@ -366,7 +366,7 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
#elif defined(HAVE_MUMPS_) #elif defined(HAVE_MUMPS_)
call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',mld_mumps_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
#endif #endif
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info)
case(mld_slu_) case(mld_slu_)
@ -380,10 +380,10 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_ilu_n_, mld_ilu_t_,mld_milu_n_) case(psb_ilu_n_, psb_ilu_t_,psb_milu_n_)
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',val,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_repl_mat_,info,pos=pos)
@ -394,7 +394,7 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_umf_) case(mld_umf_)
@ -412,7 +412,7 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
@ -435,7 +435,7 @@ subroutine mld_zcprecseti(p,what,val,info,ilev,ilmax,pos,idx)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#else #else
call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos) call p%precv(nlev_)%set('SMOOTHER_TYPE',mld_bjac_,info,pos=pos)
call p%precv(nlev_)%set('SUB_SOLVE',mld_ilu_n_,info,pos=pos) call p%precv(nlev_)%set('SUB_SOLVE',psb_ilu_n_,info,pos=pos)
call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos) call p%precv(nlev_)%set('COARSE_MAT',mld_distr_mat_,info,pos=pos)
#endif #endif
case(mld_jac_) case(mld_jac_)

@ -50,9 +50,6 @@ mld_c_ilu_solver_clear_data.o \
mld_c_ilu_solver_clone_settings.o \ mld_c_ilu_solver_clone_settings.o \
mld_c_ilu_solver_cnv.o \ mld_c_ilu_solver_cnv.o \
mld_c_ilu_solver_dmp.o \ mld_c_ilu_solver_dmp.o \
mld_cilu0_fact.o \
mld_ciluk_fact.o \
mld_cilut_fact.o \
mld_c_mumps_solver_apply.o \ mld_c_mumps_solver_apply.o \
mld_c_mumps_solver_apply_vect.o \ mld_c_mumps_solver_apply_vect.o \
mld_c_mumps_solver_bld.o \ mld_c_mumps_solver_bld.o \
@ -99,9 +96,6 @@ mld_d_ilu_solver_clear_data.o \
mld_d_ilu_solver_clone_settings.o \ mld_d_ilu_solver_clone_settings.o \
mld_d_ilu_solver_cnv.o \ mld_d_ilu_solver_cnv.o \
mld_d_ilu_solver_dmp.o \ mld_d_ilu_solver_dmp.o \
mld_dilu0_fact.o \
mld_diluk_fact.o \
mld_dilut_fact.o \
mld_d_mumps_solver_apply.o \ mld_d_mumps_solver_apply.o \
mld_d_mumps_solver_apply_vect.o \ mld_d_mumps_solver_apply_vect.o \
mld_d_mumps_solver_bld.o \ mld_d_mumps_solver_bld.o \
@ -148,9 +142,6 @@ mld_s_ilu_solver_clear_data.o \
mld_s_ilu_solver_clone_settings.o \ mld_s_ilu_solver_clone_settings.o \
mld_s_ilu_solver_cnv.o \ mld_s_ilu_solver_cnv.o \
mld_s_ilu_solver_dmp.o \ mld_s_ilu_solver_dmp.o \
mld_silu0_fact.o \
mld_siluk_fact.o \
mld_silut_fact.o \
mld_s_mumps_solver_apply.o \ mld_s_mumps_solver_apply.o \
mld_s_mumps_solver_apply_vect.o \ mld_s_mumps_solver_apply_vect.o \
mld_s_mumps_solver_bld.o \ mld_s_mumps_solver_bld.o \
@ -197,15 +188,11 @@ mld_z_ilu_solver_bld.o \
mld_z_ilu_solver_clone.o \ mld_z_ilu_solver_clone.o \
mld_z_ilu_solver_cnv.o \ mld_z_ilu_solver_cnv.o \
mld_z_ilu_solver_dmp.o \ mld_z_ilu_solver_dmp.o \
mld_zilu0_fact.o \
mld_ziluk_fact.o \
mld_zilut_fact.o \
mld_z_mumps_solver_apply.o \ mld_z_mumps_solver_apply.o \
mld_z_mumps_solver_apply_vect.o \ mld_z_mumps_solver_apply_vect.o \
mld_z_mumps_solver_bld.o \ mld_z_mumps_solver_bld.o \
LIBNAME=libmld_prec.a LIBNAME=libmld_prec.a
lib: $(OBJS) lib: $(OBJS)

@ -99,7 +99,7 @@ subroutine mld_c_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
select case(sv%fact_type) select case(sv%fact_type)
case (mld_ilu_t_) case (psb_ilu_t_)
! !
! ILU(k,t) ! ILU(k,t)
! !
@ -113,17 +113,17 @@ subroutine mld_c_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
case(0:) case(0:)
! Fill-in >= 0 ! Fill-in >= 0
call mld_ilut_fact(sv%fill_in,sv%thresh,& call psb_ilut_fact(sv%fill_in,sv%thresh,&
& a, sv%l,sv%u,sv%d,info,blck=b) & a, sv%l,sv%u,sv%d,info,blck=b)
end select end select
if(info /= psb_success_) then if(info /= psb_success_) then
info=psb_err_from_subroutine_ info=psb_err_from_subroutine_
ch_err='mld_ilut_fact' ch_err='psb_ilut_fact'
call psb_errpush(info,name,a_err=ch_err) call psb_errpush(info,name,a_err=ch_err)
goto 9999 goto 9999
end if end if
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
! !
! ILU(k) and MILU(k) ! ILU(k) and MILU(k)
! !
@ -137,24 +137,24 @@ subroutine mld_c_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
! Fill-in 0 ! Fill-in 0
! Separate implementation of ILU(0) for better performance. ! Separate implementation of ILU(0) for better performance.
! There seems to be a problem with the separate implementation of MILU(0), ! There seems to be a problem with the separate implementation of MILU(0),
! contained into mld_ilu0_fact. This must be investigated. For the time being, ! contained into psb_ilu0_fact. This must be investigated. For the time being,
! resort to the implementation of MILU(k) with k=0. ! resort to the implementation of MILU(k) with k=0.
if (sv%fact_type == mld_ilu_n_) then if (sv%fact_type == psb_ilu_n_) then
call mld_ilu0_fact(sv%fact_type,a,sv%l,sv%u,& call psb_ilu0_fact(sv%fact_type,a,sv%l,sv%u,&
& sv%d,info,blck=b) & sv%d,info,blck=b)
else else
call mld_iluk_fact(sv%fill_in,sv%fact_type,& call psb_iluk_fact(sv%fill_in,sv%fact_type,&
& a,sv%l,sv%u,sv%d,info,blck=b) & a,sv%l,sv%u,sv%d,info,blck=b)
endif endif
case(1:) case(1:)
! Fill-in >= 1 ! Fill-in >= 1
! The same routine implements both ILU(k) and MILU(k) ! The same routine implements both ILU(k) and MILU(k)
call mld_iluk_fact(sv%fill_in,sv%fact_type,& call psb_iluk_fact(sv%fill_in,sv%fact_type,&
& a,sv%l,sv%u,sv%d,info,blck=b) & a,sv%l,sv%u,sv%d,info,blck=b)
end select end select
if (info /= psb_success_) then if (info /= psb_success_) then
info=psb_err_from_subroutine_ info=psb_err_from_subroutine_
ch_err='mld_iluk_fact' ch_err='psb_iluk_fact'
call psb_errpush(info,name,a_err=ch_err) call psb_errpush(info,name,a_err=ch_err)
goto 9999 goto 9999
end if end if

@ -1,666 +0,0 @@
!
!
! MLD2P4 version 2.2
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008-2018
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: mld_cilu0_fact.f90
!
! Subroutine: mld_cilu0_fact
! Version: complex
! Contains: mld_cilu0_factint, ilu_copyin
!
! This routine computes either the ILU(0) or the MILU(0) factorization of
! the diagonal blocks of a distributed matrix. These factorizations are used
! to build the 'base preconditioner' (block-Jacobi preconditioner/solver,
! Additive Schwarz preconditioner) corresponding to a given level of a
! multilevel preconditioner.
!
! Details on the above factorizations can be found in
! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
! SIAM, 2003, Chapter 10.
!
! The local matrix is stored into a and blck, as specified in the description
! of the arguments below. The storage format for both the L and U factors is CSR.
! The diagonal of the U factor is stored separately (actually, the inverse of the
! diagonal entries is stored; this is then managed in the solve stage associated
! to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from a and blck into l (L factor),
! u (U factor, except its diagonal) and d (diagonal of U).
!
! This implementation of ILU(0)/MILU(0) is faster than the implementation in
! mld_ziluk_fct (the latter routine performs the more general ILU(k)/MILU(k)).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The MILU(0) factorization is computed if ialg = 2 (= mld_milu_n_);
! the ILU(0) factorization otherwise.
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_as_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! l - type(psb_cspmat_type), input/output.
! The L factor in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! u - type(psb_cspmat_type), input/output.
! The U factor (except its diagonal) in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! d - complex(psb_spk_), dimension(:), input/output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! info - integer, output.
! Error code.
! blck - type(psb_cspmat_type), input, optional, target.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then blck is empty.
!
subroutine mld_cilu0_fact(ialg,a,l,u,d,info,blck, upd)
use psb_base_mod
use mld_c_ilu_fact_mod, mld_protect_name => mld_cilu0_fact
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_cspmat_type),intent(in) :: a
type(psb_cspmat_type),intent(inout) :: l,u
complex(psb_spk_), intent(inout) :: d(:)
integer(psb_ipk_), intent(out) :: info
type(psb_cspmat_type),intent(in), optional, target :: blck
character, intent(in), optional :: upd
! Local variables
integer(psb_ipk_) :: l1, l2, m, err_act
type(psb_cspmat_type), pointer :: blck_
type(psb_c_csr_sparse_mat) :: ll, uu
character :: upd_
character(len=20) :: name, ch_err
name='mld_cilu0_fact'
info = psb_success_
call psb_erractionsave(err_act)
!
! Point to / allocate memory for the incomplete factorization
!
if (present(blck)) then
blck_ => blck
else
allocate(blck_,stat=info)
if (info == psb_success_) call blck_%csall(izero,izero,info,ione)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csall'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
if (present(upd)) then
upd_ = psb_toupper(upd)
else
upd_ = 'F'
end if
m = a%get_nrows() + blck_%get_nrows()
if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.&
& (m > size(d)) ) then
write(0,*) 'Wrong allocation status for L,D,U? ',&
& l%get_nrows(),size(d),u%get_nrows()
info = -1
return
end if
call l%mv_to(ll)
call u%mv_to(uu)
!
! Compute the ILU(0) or the MILU(0) factorization, depending on ialg
!
call mld_cilu0_factint(ialg,a,blck_,&
& d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,upd_,info)
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='mld_cilu0_factint'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Store information on the L and U sparse matrices
!
call l%mv_from(ll)
call l%set_triangle()
call l%set_unit()
call l%set_lower()
call u%mv_from(uu)
call u%set_triangle()
call u%set_unit()
call u%set_upper()
!
! Nullify pointer / deallocate memory
!
if (present(blck)) then
blck_ => null()
else
call blck_%free()
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(blck_)
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
!
! Subroutine: mld_cilu0_factint
! Version: complex
! Note: internal subroutine of mld_cilu0_fact.
!
! This routine computes either the ILU(0) or the MILU(0) factorization of the
! diagonal blocks of a distributed matrix.
! These factorizations are used to build the 'base preconditioner'
! (block-Jacobi preconditioner/solver, Additive Schwarz
! preconditioner) corresponding to a given level of a multilevel preconditioner.
!
! The local matrix is stored into a and b, as specified in the
! description of the arguments below. The storage format for both the L and U
! factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the
! solve stage associated to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from the sparse matrix structures a
! and b into the arrays lval, uval, d (L, U without its diagonal, diagonal of U).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The ILU(0) factorization is computed if ialg = 1 (= mld_ilu_n_),
! the MILU(0) one if ialg = 2 (= mld_milu_n_); other values
! are not allowed.
! m - integer, output.
! The total number of rows of the local matrix to be factorized,
! i.e. ma+mb.
! ma - integer, input
! The number of rows of the local submatrix stored into a.
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that, if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! mb - integer, input.
! The number of rows of the local submatrix stored into b.
! b - type(psb_cspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been
! reordered (see mld_fact_bld), then b does not contain any row.
! d - complex(psb_spk_), dimension(:), output.
! The inverse of the diagonal entries of the U factor in the
! incomplete factorization.
! lval - complex(psb_spk_), dimension(:), input/output.
! The entries of U are stored according to the CSR format.
! The L factor in the incomplete factorization.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! according to the CSR storage format.
! lirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor in lval, according to the CSR storage format.
! uval - complex(psb_spk_), dimension(:), input/output.
! The U factor in the incomplete factorization.
! The entries of U are stored according to the CSR format.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor,
! according to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor in uval, according to the CSR storage format.
! l1 - integer, output.
! The number of nonzero entries in lval.
! l2 - integer, output.
! The number of nonzero entries in uval.
! info - integer, output.
! Error code.
!
subroutine mld_cilu0_factint(ialg,a,b,&
& d,lval,lja,lirp,uval,uja,uirp,l1,l2,upd,info)
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_cspmat_type),intent(in) :: a,b
integer(psb_ipk_),intent(inout) :: l1,l2,info
integer(psb_ipk_), intent(inout) :: lja(:),lirp(:),uja(:),uirp(:)
complex(psb_spk_), intent(inout) :: lval(:),uval(:),d(:)
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: i,j,k,l,low1,low2,kk,jj,ll, ktrw,err_act, m
integer(psb_ipk_) :: ma,mb
complex(psb_spk_) :: dia,temp
integer(psb_ipk_), parameter :: nrb=16
type(psb_c_coo_sparse_mat) :: trw
integer(psb_ipk_) :: int_err(5)
character(len=20) :: name, ch_err
name='mld_cilu0_factint'
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
ma = a%get_nrows()
mb = b%get_nrows()
select case(ialg)
case(mld_ilu_n_,mld_milu_n_)
! Ok
case default
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name,&
& i_err=(/ione,ialg,izero,izero,izero/))
goto 9999
end select
call trw%allocate(izero,izero,ione)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_all'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
m = ma+mb
if (psb_toupper(upd) == 'F' ) then
lirp(1) = 1
uirp(1) = 1
l1 = 0
l2 = 0
!
! Cycle over the matrix rows
!
do i = 1, m
d(i) = czero
if (i <= ma) then
!
! Copy the i-th local row of the matrix, stored in a,
! into lval/d(i)/uval
!
call ilu_copyin(i,ma,a,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
else
!
! Copy the i-th local row of the matrix, stored in b
! (as (i-ma)-th row), into lval/d(i)/uval
!
call ilu_copyin(i-ma,mb,b,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
endif
lirp(i+1) = l1 + 1
uirp(i+1) = l2 + 1
dia = d(i)
do kk = lirp(i), lirp(i+1) - 1
!
! Compute entry l(i,k) (lower factor L) of the incomplete
! factorization
!
temp = lval(kk)
k = lja(kk)
lval(kk) = temp*d(k)
!
! Update the rest of row i (lower and upper factors L and U)
! using l(i,k)
!
low1 = kk + 1
low2 = uirp(i)
!
updateloop: do jj = uirp(k), uirp(k+1) - 1
!
j = uja(jj)
!
if (j < i) then
!
! search l(i,*) (i-th row of L) for a matching index j
!
do ll = low1, lirp(i+1) - 1
l = lja(ll)
if (l > j) then
low1 = ll
exit
else if (l == j) then
lval(ll) = lval(ll) - temp*uval(jj)
low1 = ll + 1
cycle updateloop
end if
enddo
else if (j == i) then
!
! j=i: update the diagonal
!
dia = dia - temp*uval(jj)
cycle updateloop
!
else if (j > i) then
!
! search u(i,*) (i-th row of U) for a matching index j
!
do ll = low2, uirp(i+1) - 1
l = uja(ll)
if (l > j) then
low2 = ll
exit
else if (l == j) then
uval(ll) = uval(ll) - temp*uval(jj)
low2 = ll + 1
cycle updateloop
end if
enddo
end if
!
! If we get here we missed the cycle updateloop, which means
! that this entry does not match; thus we accumulate on the
! diagonal for MILU(0).
!
if (ialg == mld_milu_n_) then
dia = dia - temp*uval(jj)
end if
enddo updateloop
enddo
!
! Check the pivot size
!
if (abs(dia) < s_epstol) then
!
! Too small pivot: unstable factorization
!
info = psb_err_pivot_too_small_
int_err(1) = i
write(ch_err,'(g20.10)') abs(dia)
call psb_errpush(info,name,i_err=int_err,a_err=ch_err)
goto 9999
else
!
! Compute 1/pivot
!
dia = cone/dia
end if
d(i) = dia
!
! Scale row i of upper triangle
!
do kk = uirp(i), uirp(i+1) - 1
uval(kk) = uval(kk)*dia
enddo
enddo
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call trw%free()
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_cilu0_factint
!
! Subroutine: ilu_copyin
! Version: complex
! Note: internal subroutine of mld_cilu0_fact
!
! This routine copies a row of a sparse matrix A, stored in the psb_cspmat_type
! data structure a, into the arrays lval and uval and into the scalar variable
! dia, corresponding to the lower and upper triangles of A and to the diagonal
! entry of the row, respectively. The entries in lval and uval are stored
! according to the CSR format; the corresponding column indices are stored in
! the arrays lja and uja.
!
! If the sparse matrix is in CSR format, a 'straight' copy is performed;
! otherwise psb_sp_getblk is used to extract a block of rows, which is then
! copied into lval, dia, uval row by row, through successive calls to
! ilu_copyin.
!
! The routine is used by mld_cilu0_factint in the computation of the ILU(0)/MILU(0)
! factorization of a local sparse matrix.
!
! TODO: modify the routine to allow copying into output L and U that are
! already filled with indices; this would allow computing an ILU(k) pattern,
! then use the ILU(0) internal for subsequent calls with the same pattern.
!
! Arguments:
! i - integer, input.
! The local index of the row to be extracted from the
! sparse matrix structure a.
! m - integer, input.
! The number of rows of the local matrix stored into a.
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the row to be copied.
! jd - integer, input.
! The column index of the diagonal entry of the row to be
! copied.
! jmin - integer, input.
! Minimum valid column index.
! jmax - integer, input.
! Maximum valid column index.
! The output matrix will contain a clipped copy taken from
! a(1:m,jmin:jmax).
! l1 - integer, input/output.
! Pointer to the last occupied entry of lval.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the lower triangle
! copied in lval row by row (see mld_cilu0_factint), according
! to the CSR storage format.
! lval - complex(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! lower triangle are copied.
! dia - complex(psb_spk_), output.
! The diagonal entry of the copied row.
! l2 - integer, input/output.
! Pointer to the last occupied entry of uval.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the upper triangle
! copied in uval row by row (see mld_cilu0_factint), according
! to the CSR storage format.
! uval - complex(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! upper triangle are copied.
! ktrw - integer, input/output.
! The index identifying the last entry taken from the
! staging buffer trw. See below.
! trw - type(psb_cspmat_type), input/output.
! A staging buffer. If the matrix A is not in CSR format, we use
! the psb_sp_getblk routine and store its output in trw; when we
! need to call psb_sp_getblk we do it for a block of rows, and then
! we consume them from trw in successive calls to this routine,
! until we empty the buffer. Thus we will make a call to psb_sp_getblk
! every nrb calls to copyin. If A is in CSR format it is unused.
!
subroutine ilu_copyin(i,m,a,jd,jmin,jmax,l1,lja,lval,&
& dia,l2,uja,uval,ktrw,trw,upd)
use psb_base_mod
implicit none
! Arguments
type(psb_cspmat_type), intent(in) :: a
type(psb_c_coo_sparse_mat), intent(inout) :: trw
integer(psb_ipk_), intent(in) :: i,m,jd,jmin,jmax
integer(psb_ipk_), intent(inout) :: ktrw,l1,l2
integer(psb_ipk_), intent(inout) :: lja(:), uja(:)
complex(psb_spk_), intent(inout) :: lval(:), uval(:), dia
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: k,j,info,irb, nz
integer(psb_ipk_), parameter :: nrb=40
character(len=20), parameter :: name='ilu_copyin'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
if (psb_toupper(upd) == 'F') then
select type(aa => a%a)
type is (psb_c_csr_sparse_mat)
!
! Take a fast shortcut if the matrix is stored in CSR format
!
do j = aa%irp(i), aa%irp(i+1) - 1
k = aa%ja(j)
! write(0,*)'KKKKK',k
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = aa%val(j)
lja(l1) = k
else if (k == jd) then
dia = aa%val(j)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = aa%val(j)
uja(l2) = k
end if
enddo
class default
!
! Otherwise use psb_sp_getblk, slower but able (in principle) of
! handling any format. In this case, a block of rows is extracted
! instead of a single row, for performance reasons, and these
! rows are copied one by one into lval, dia, uval, through
! successive calls to ilu_copyin.
!
if ((mod(i,nrb) == 1).or.(nrb == 1)) then
irb = min(m-i+1,nrb)
call aa%csget(i,i+irb-1,trw,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csget'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
ktrw=1
end if
nz = trw%get_nzeros()
do
if (ktrw > nz) exit
if (trw%ia(ktrw) > i) exit
k = trw%ja(ktrw)
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = trw%val(ktrw)
lja(l1) = k
else if (k == jd) then
dia = trw%val(ktrw)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = trw%val(ktrw)
uja(l2) = k
end if
ktrw = ktrw + 1
enddo
end select
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine ilu_copyin
end subroutine mld_cilu0_fact

@ -1,969 +0,0 @@
!
!
! MLD2P4 version 2.2
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008-2018
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: mld_ciluk_fact.f90
!
! Subroutine: mld_ciluk_fact
! Version: complex
! Contains: mld_ciluk_factint, iluk_copyin, iluk_fact, iluk_copyout.
!
! This routine computes either the ILU(k) or the MILU(k) factorization of the
! diagonal blocks of a distributed matrix. These factorizations are used to
! build the 'base preconditioner' (block-Jacobi preconditioner/solver,
! Additive Schwarz preconditioner) corresponding to a certain level of a
! multilevel preconditioner.
!
! Details on the above factorizations can be found in
! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
! SIAM, 2003, Chapter 10.
!
! The local matrix is stored into a and blck, as specified in
! the description of the arguments below. The storage format for both the L and
! U factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the solve
! stage associated to the ILU(k)/MILU(k) factorization).
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The ILU(k) factorization is computed if ialg = 1 (= mld_ilu_n_);
! the MILU(k) one if ialg = 2 (= mld_milu_n_); other values are
! not allowed.
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! l - type(psb_cspmat_type), input/output.
! The L factor in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! u - type(psb_cspmat_type), input/output.
! The U factor (except its diagonal) in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! d - complex(psb_spk_), dimension(:), input/output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! info - integer, output.
! Error code.
! blck - type(psb_cspmat_type), input, optional, target.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then blck does not contain any row.
!
subroutine mld_ciluk_fact(fill_in,ialg,a,l,u,d,info,blck)
use psb_base_mod
use mld_c_ilu_fact_mod, mld_protect_name => mld_ciluk_fact
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg
integer(psb_ipk_), intent(out) :: info
type(psb_cspmat_type),intent(in) :: a
type(psb_cspmat_type),intent(inout) :: l,u
type(psb_cspmat_type),intent(in), optional, target :: blck
complex(psb_spk_), intent(inout) :: d(:)
! Local Variables
integer(psb_ipk_) :: l1, l2, m, err_act
type(psb_cspmat_type), pointer :: blck_
type(psb_c_csr_sparse_mat) :: ll, uu
character(len=20) :: name, ch_err
name='mld_ciluk_fact'
info = psb_success_
call psb_erractionsave(err_act)
!
! Point to / allocate memory for the incomplete factorization
!
if (present(blck)) then
blck_ => blck
else
allocate(blck_,stat=info)
if (info == psb_success_) call blck_%csall(izero,izero,info,ione)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csall'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
m = a%get_nrows() + blck_%get_nrows()
if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.&
& (m > size(d)) ) then
write(0,*) 'Wrong allocation status for L,D,U? ',&
& l%get_nrows(),size(d),u%get_nrows()
info = -1
return
end if
call l%mv_to(ll)
call u%mv_to(uu)
!
! Compute the ILU(k) or the MILU(k) factorization, depending on ialg
!
call mld_ciluk_factint(fill_in,ialg,a,blck_,&
& d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='mld_ciluk_factint'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Store information on the L and U sparse matrices
!
call l%mv_from(ll)
call l%set_triangle()
call l%set_unit()
call l%set_lower()
call u%mv_from(uu)
call u%set_triangle()
call u%set_unit()
call u%set_upper()
!
! Nullify pointer / deallocate memory
!
if (present(blck)) then
blck_ => null()
else
call blck_%free()
deallocate(blck_,stat=info)
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
!
! Subroutine: mld_ciluk_factint
! Version: complex
! Note: internal subroutine of mld_ciluk_fact
!
! This routine computes either the ILU(k) or the MILU(k) factorization of the
! diagonal blocks of a distributed matrix. These factorizations are used to build
! the 'base preconditioner' (block-Jacobi preconditioner/solver, Additive Schwarz
! preconditioner) corresponding to a certain level of a multilevel preconditioner.
!
! The local matrix is stored into a and b, as specified in the
! description of the arguments below. The storage format for both the L and U
! factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the
! solve stage associated to the ILU(k)/MILU(k) factorization).
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The MILU(k) factorization is computed if ialg = 2 (= mld_milu_n_);
! the ILU(k) factorization otherwise.
! m - integer, output.
! The total number of rows of the local matrix to be factorized,
! i.e. ma+mb.
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that, if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! b - type(psb_cspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then b does not contain any row.
! d - complex(psb_spk_), dimension(:), output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! laspk - complex(psb_spk_), dimension(:), input/output.
! The L factor in the incomplete factorization.
! lia1 - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! according to the CSR storage format.
! lia2 - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor in laspk, according to the CSR storage format.
! uval - complex(psb_spk_), dimension(:), input/output.
! The U factor in the incomplete factorization.
! The entries of U are stored according to the CSR format.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor,
! according to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor in uval, according to the CSR storage format.
! l1 - integer, output
! The number of nonzero entries in laspk.
! l2 - integer, output
! The number of nonzero entries in uval.
! info - integer, output.
! Error code.
!
subroutine mld_ciluk_factint(fill_in,ialg,a,b,&
& d,lval,lja,lirp,uval,uja,uirp,l1,l2,info)
use psb_base_mod
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg
type(psb_cspmat_type),intent(in) :: a,b
integer(psb_ipk_),intent(inout) :: l1,l2,info
integer(psb_ipk_), allocatable, intent(inout) :: lja(:),lirp(:),uja(:),uirp(:)
complex(psb_spk_), allocatable, intent(inout) :: lval(:),uval(:)
complex(psb_spk_), intent(inout) :: d(:)
! Local variables
integer(psb_ipk_) :: ma,mb,i, ktrw,err_act,nidx, m
integer(psb_ipk_), allocatable :: uplevs(:), rowlevs(:),idxs(:)
complex(psb_spk_), allocatable :: row(:)
type(psb_i_heap) :: heap
type(psb_c_coo_sparse_mat) :: trw
character(len=20), parameter :: name='mld_ciluk_factint'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
select case(ialg)
case(mld_ilu_n_,mld_milu_n_)
! Ok
case default
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name,&
& i_err=(/itwo,ialg,izero,izero,izero/))
goto 9999
end select
if (fill_in < 0) then
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name, &
& i_err=(/ione,fill_in,izero,izero,izero/))
goto 9999
end if
ma = a%get_nrows()
mb = b%get_nrows()
m = ma+mb
!
! Allocate a temporary buffer for the iluk_copyin function
!
call trw%allocate(izero,izero,ione)
if (info == psb_success_) call psb_ensure_size(m+1,lirp,info)
if (info == psb_success_) call psb_ensure_size(m+1,uirp,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='psb_sp_all')
goto 9999
end if
l1=0
l2=0
lirp(1) = 1
uirp(1) = 1
!
! Allocate memory to hold the entries of a row and the corresponding
! fill levels
!
allocate(uplevs(size(uval)),rowlevs(m),row(m),stat=info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
uplevs(:) = m+1
row(:) = czero
rowlevs(:) = -(m+1)
!
! Cycle over the matrix rows
!
do i = 1, m
!
! At each iteration of the loop we keep in a heap the column indices
! affected by the factorization. The heap is initialized and filled
! in the iluk_copyin routine, and updated during the elimination, in
! the iluk_fact routine. The heap is ideal because at each step we need
! the lowest index, but we also need to insert new items, and the heap
! allows to do both in log time.
!
d(i) = czero
if (i<=ma) then
!
! Copy into trw the i-th local row of the matrix, stored in a
!
call iluk_copyin(i,ma,a,ione,m,row,rowlevs,heap,ktrw,trw,info)
else
!
! Copy into trw the i-th local row of the matrix, stored in b
! (as (i-ma)-th row)
!
call iluk_copyin(i-ma,mb,b,ione,m,row,rowlevs,heap,ktrw,trw,info)
endif
! Do an elimination step on the current row. It turns out we only
! need to keep track of fill levels for the upper triangle, hence we
! do not have a lowlevs variable.
!
if (info == psb_success_) call iluk_fact(fill_in,i,row,rowlevs,heap,&
& d,uja,uirp,uval,uplevs,nidx,idxs,info)
!
! Copy the row into lval/d(i)/uval
!
if (info == psb_success_) call iluk_copyout(fill_in,ialg,i,m,row,rowlevs,nidx,idxs,&
& l1,l2,lja,lirp,lval,d,uja,uirp,uval,uplevs,info)
if (info /= psb_success_) then
info=psb_err_internal_error_
call psb_errpush(info,name,a_err='Copy/factor loop')
goto 9999
end if
end do
!
! And we're done, so deallocate the memory
!
deallocate(uplevs,rowlevs,row,stat=info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Deallocate')
goto 9999
end if
if (info == psb_success_) call trw%free()
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_ciluk_factint
!
! Subroutine: iluk_copyin
! Version: complex
! Note: internal subroutine of mld_ciluk_fact
!
! This routine copies a row of a sparse matrix A, stored in the sparse matrix
! structure a, into the array row and stores into a heap the column indices of
! the nonzero entries of the copied row. The output array row is such that it
! contains a full row of A, i.e. it contains also the zero entries of the row.
! This is useful for the elimination step performed by iluk_fact after the call
! to iluk_copyin (see mld_iluk_factint).
! The routine also sets to zero the entries of the array rowlevs corresponding
! to the nonzero entries of the copied row (see the description of the arguments
! below).
!
! If the sparse matrix is in CSR format, a 'straight' copy is performed;
! otherwise psb_sp_getblk is used to extract a block of rows, which is then
! copied, row by row, into the array row, through successive calls to
! ilu_copyin.
!
! This routine is used by mld_ciluk_factint in the computation of the
! ILU(k)/MILU(k) factorization of a local sparse matrix.
!
!
! Arguments:
! i - integer, input.
! The local index of the row to be extracted from the
! sparse matrix structure a.
! m - integer, input.
! The number of rows of the local matrix stored into a.
! a - type(psb_cspmat_type), input.
! The sparse matrix structure containing the row to be copied.
! jmin - integer, input.
! The minimum valid column index.
! jmax - integer, input.
! The maximum valid column index.
! The output matrix will contain a clipped copy taken from
! a(1:m,jmin:jmax).
! row - complex(psb_spk_), dimension(:), input/output.
! In input it is the null vector (see mld_iluk_factint and
! iluk_copyout). In output it contains the row extracted
! from the matrix A. It actually contains a full row, i.e.
! it contains also the zero entries of the row.
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) = -(m+1) for k=1,...,m. In output
! rowlevs(k) = 0 for 1 <= k <= jmax and A(i,k) /= 0, for
! future use in iluk_fact.
! heap - type(psb_i_heap), input/output.
! The heap containing the column indices of the nonzero
! entries in the array row.
! Note: this argument is intent(inout) and not only intent(out)
! to retain its allocation, done by psb_init_heap inside this
! routine.
! ktrw - integer, input/output.
! The index identifying the last entry taken from the
! staging buffer trw. See below.
! trw - type(psb_cspmat_type), input/output.
! A staging buffer. If the matrix A is not in CSR format, we use
! the psb_sp_getblk routine and store its output in trw; when we
! need to call psb_sp_getblk we do it for a block of rows, and then
! we consume them from trw in successive calls to this routine,
! until we empty the buffer. Thus we will make a call to psb_sp_getblk
! every nrb calls to copyin. If A is in CSR format it is unused.
!
subroutine iluk_copyin(i,m,a,jmin,jmax,row,rowlevs,heap,ktrw,trw,info)
use psb_base_mod
implicit none
! Arguments
type(psb_cspmat_type), intent(in) :: a
type(psb_c_coo_sparse_mat), intent(inout) :: trw
integer(psb_ipk_), intent(in) :: i,m,jmin,jmax
integer(psb_ipk_), intent(inout) :: ktrw,info
integer(psb_ipk_), intent(inout) :: rowlevs(:)
complex(psb_spk_), intent(inout) :: row(:)
type(psb_i_heap), intent(inout) :: heap
! Local variables
integer(psb_ipk_) :: k,j,irb,err_act,nz
integer(psb_ipk_), parameter :: nrb=40
character(len=20), parameter :: name='iluk_copyin'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
call heap%init(info)
select type (aa=> a%a)
type is (psb_c_csr_sparse_mat)
!
! Take a fast shortcut if the matrix is stored in CSR format
!
do j = aa%irp(i), aa%irp(i+1) - 1
k = aa%ja(j)
if ((jmin<=k).and.(k<=jmax)) then
row(k) = aa%val(j)
rowlevs(k) = 0
call heap%insert(k,info)
end if
end do
class default
!
! Otherwise use psb_sp_getblk, slower but able (in principle) of
! handling any format. In this case, a block of rows is extracted
! instead of a single row, for performance reasons, and these
! rows are copied one by one into the array row, through successive
! calls to iluk_copyin.
!
if ((mod(i,nrb) == 1).or.(nrb == 1)) then
irb = min(m-i+1,nrb)
call aa%csget(i,i+irb-1,trw,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_getblk'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
ktrw=1
end if
nz = trw%get_nzeros()
do
if (ktrw > nz) exit
if (trw%ia(ktrw) > i) exit
k = trw%ja(ktrw)
if ((jmin<=k).and.(k<=jmax)) then
row(k) = trw%val(ktrw)
rowlevs(k) = 0
call heap%insert(k,info)
end if
ktrw = ktrw + 1
enddo
end select
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine iluk_copyin
!
! Subroutine: iluk_fact
! Version: complex
! Note: internal subroutine of mld_ciluk_fact
!
! This routine does an elimination step of the ILU(k) factorization on a
! single matrix row (see the calling routine mld_iluk_factint).
!
! This step is also the base for a MILU(k) elimination step on the row (see
! iluk_copyout). This routine is used by mld_ciluk_factint in the computation
! of the ILU(k)/MILU(k) factorization of a local sparse matrix.
!
! NOTE: it turns out we only need to keep track of the fill levels for
! the upper triangle.
!
!
! Arguments
! fill_in - integer, input.
! The fill-in level k in ILU(k).
! i - integer, input.
! The local index of the row to which the factorization is
! applied.
! row - complex(psb_spk_), dimension(:), input/output.
! In input it contains the row to which the elimination step
! has to be applied. In output it contains the row after the
! elimination step. It actually contains a full row, i.e.
! it contains also the zero entries of the row.
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) = 0 if the k-th entry of the row is
! nonzero, and rowlevs(k) = -(m+1) otherwise. In output
! rowlevs(k) contains the fill kevel of the k-th entry of
! the row after the current elimination step; rowlevs(k) = -(m+1)
! means that the k-th row entry is zero throughout the elimination
! step.
! heap - type(psb_i_heap), input/output.
! The heap containing the column indices of the nonzero entries
! in the processed row. In input it contains the indices concerning
! the row before the elimination step, while in output it contains
! the indices concerning the transformed row.
! d - complex(psb_spk_), input.
! The inverse of the diagonal entries of the part of the U factor
! above the current row (see iluk_copyout).
! uja - integer, dimension(:), input.
! The column indices of the nonzero entries of the part of the U
! factor above the current row, stored in uval row by row (see
! iluk_copyout, called by mld_ciluk_factint), according to the CSR
! storage format.
! uirp - integer, dimension(:), input.
! The indices identifying the first nonzero entry of each row of
! the U factor above the current row, stored in uval row by row
! (see iluk_copyout, called by mld_ciluk_factint), according to
! the CSR storage format.
! uval - complex(psb_spk_), dimension(:), input.
! The entries of the U factor above the current row (except the
! diagonal ones), stored according to the CSR format.
! uplevs - integer, dimension(:), input.
! The fill levels of the nonzero entries in the part of the
! U factor above the current row.
! nidx - integer, output.
! The number of entries of the array row that have been
! examined during the elimination step. This will be used
! by the routine iluk_copyout.
! idxs - integer, dimension(:), allocatable, input/output.
! The indices of the entries of the array row that have been
! examined during the elimination step.This will be used by
! by the routine iluk_copyout.
! Note: this argument is intent(inout) and not only intent(out)
! to retain its allocation, done by this routine.
!
subroutine iluk_fact(fill_in,i,row,rowlevs,heap,d,uja,uirp,uval,uplevs,nidx,idxs,info)
use psb_base_mod
implicit none
! Arguments
type(psb_i_heap), intent(inout) :: heap
integer(psb_ipk_), intent(in) :: i, fill_in
integer(psb_ipk_), intent(inout) :: nidx,info
integer(psb_ipk_), intent(inout) :: rowlevs(:)
integer(psb_ipk_), allocatable, intent(inout) :: idxs(:)
integer(psb_ipk_), intent(inout) :: uja(:),uirp(:),uplevs(:)
complex(psb_spk_), intent(inout) :: row(:), uval(:),d(:)
! Local variables
integer(psb_ipk_) :: k,j,lrwk,jj,lastk, iret
complex(psb_spk_) :: rwk
info = psb_success_
if (.not.allocated(idxs)) then
allocate(idxs(200),stat=info)
if (info /= psb_success_) return
endif
nidx = 0
lastk = -1
!
! Do while there are indices to be processed
!
do
! Beware: (iret < 0) means that the heap is empty, not an error.
call heap%get_first(k,iret)
if (iret < 0) return
!
! Just in case an index has been put on the heap more than once.
!
if (k == lastk) cycle
lastk = k
nidx = nidx + 1
if (nidx>size(idxs)) then
call psb_realloc(nidx+psb_heap_resize,idxs,info)
if (info /= psb_success_) return
end if
idxs(nidx) = k
if ((row(k) /= czero).and.(rowlevs(k) <= fill_in).and.(k<i)) then
!
! Note: since U is scaled while copying it out (see iluk_copyout),
! we can use rwk in the update below
!
rwk = row(k)
row(k) = row(k) * d(k) ! d(k) == 1/a(k,k)
lrwk = rowlevs(k)
do jj=uirp(k),uirp(k+1)-1
j = uja(jj)
if (j<=k) then
info = -i
return
endif
!
! Insert the index into the heap for further processing.
! The fill levels are initialized to a negative value. If we find
! one, it means that it is an as yet untouched index, so we need
! to insert it; otherwise it is already on the heap, there is no
! need to insert it more than once.
!
if (rowlevs(j)<0) then
call heap%insert(j,info)
if (info /= psb_success_) return
rowlevs(j) = abs(rowlevs(j))
end if
!
! Update row(j) and the corresponding fill level
!
row(j) = row(j) - rwk * uval(jj)
rowlevs(j) = min(rowlevs(j),lrwk+uplevs(jj)+1)
end do
end if
end do
end subroutine iluk_fact
!
! Subroutine: iluk_copyout
! Version: complex
! Note: internal subroutine of mld_ciluk_fact
!
! This routine copies a matrix row, computed by iluk_fact by applying an
! elimination step of the ILU(k) factorization, into the arrays lval, uval,
! d, corresponding to the L factor, the U factor and the diagonal of U,
! respectively.
!
! Note that
! - the part of the row stored into uval is scaled by the corresponding diagonal
! entry, according to the LDU form of the incomplete factorization;
! - the inverse of the diagonal entries of U is actually stored into d; this is
! then managed in the solve stage associated to the ILU(k)/MILU(k) factorization;
! - if the MILU(k) factorization has been required (ialg == mld_milu_n_), the
! row entries discarded because their fill levels are too high are added to
! the diagonal entry of the row;
! - the row entries are stored in lval and uval according to the CSR format;
! - the arrays row and rowlevs are re-initialized for future use in mld_iluk_fact
! (see also iluk_copyin and iluk_fact).
!
! This routine is used by mld_ciluk_factint in the computation of the
! ILU(k)/MILU(k) factorization of a local sparse matrix.
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization considered. The MILU(k)
! factorization is computed if ialg = 2 (= mld_milu_n_); the
! ILU(k) factorization otherwise.
! i - integer, input.
! The local index of the row to be copied.
! m - integer, input.
! The number of rows of the local matrix under factorization.
! row - complex(psb_spk_), dimension(:), input/output.
! It contains, input, the row to be copied, and, in output,
! the null vector (the latter is used in the next call to
! iluk_copyin in mld_iluk_fact).
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) contains the fill kevel of the k-th entry
! of the row to be copied. rowlevs(k) = -(m+1) indicates that
! this entry is zero; however, any rowlevs(k) = -(m+1) is not
! used by the routine. In output rowlevs(k) = -(m+1) for all k's
! (this is an inizialization for the next call to iluk_copyin
! in mld_iluk_factint).
! nidx - integer, input.
! The number of entries of the array row that have been examined
! during the elimination step carried out by the routine iluk_fact.
! idxs - integer, dimension(:), allocatable, input.
! The indices of the entries of the array row that have been
! examined during the elimination step carried out by the routine
! iluk_fact.
! l1 - integer, input/output.
! Pointer to the last occupied entry of lval.
! l2 - integer, input/output.
! Pointer to the last occupied entry of uval.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! copied in lval row by row (see mld_ciluk_factint), according
! to the CSR storage format.
! lirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor, copied in lval row by row (see
! mld_ciluk_factint), according to the CSR storage format.
! lval - complex(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! L factor are copied.
! d - complex(psb_spk_), dimension(:), input/output.
! The array where the inverse of the diagonal entry of the
! row is copied (only d(i) is used by the routine).
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor
! copied in uval row by row (see mld_ciluk_factint), according
! to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor copied in uval row by row (see
! mld_zilu_fctint), according to the CSR storage format.
! uval - complex(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! U factor are copied.
! uplevs - integer, dimension(:), input.
! The fill levels of the nonzero entries in the part of the
! U factor above the current row.
!
subroutine iluk_copyout(fill_in,ialg,i,m,row,rowlevs,nidx,idxs,&
& l1,l2,lja,lirp,lval,d,uja,uirp,uval,uplevs,info)
use psb_base_mod
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg, i, m, nidx
integer(psb_ipk_), intent(inout) :: l1, l2, info
integer(psb_ipk_), intent(inout) :: rowlevs(:), idxs(:)
integer(psb_ipk_), allocatable, intent(inout) :: uja(:), uirp(:), lja(:), lirp(:),uplevs(:)
complex(psb_spk_), allocatable, intent(inout) :: uval(:), lval(:)
complex(psb_spk_), intent(inout) :: row(:), d(:)
! Local variables
integer(psb_ipk_) :: j,isz,err_act,int_err(5),idxp
character(len=20), parameter :: name='mld_ciluk_factint'
character(len=20) :: ch_err
info = psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
d(i) = czero
do idxp=1,nidx
j = idxs(idxp)
if (j<i) then
!
! Copy the lower part of the row
!
if (rowlevs(j) <= fill_in) then
l1 = l1 + 1
if (size(lval) < l1) then
!
! Figure out a good reallocation size!
!
isz = (max((l1/i)*m,int(1.2*l1),l1+100))
call psb_realloc(isz,lval,info)
if (info == psb_success_) call psb_realloc(isz,lja,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
end if
lja(l1) = j
lval(l1) = row(j)
else if (ialg == mld_milu_n_) then
!
! MILU(k): add discarded entries to the diagonal one
!
d(i) = d(i) + row(j)
end if
!
! Re-initialize row(j) and rowlevs(j)
!
row(j) = czero
rowlevs(j) = -(m+1)
else if (j == i) then
!
! Copy the diagonal entry of the row and re-initialize
! row(j) and rowlevs(j)
!
d(i) = d(i) + row(i)
row(i) = czero
rowlevs(i) = -(m+1)
else if (j>i) then
!
! Copy the upper part of the row
!
if (rowlevs(j) <= fill_in) then
l2 = l2 + 1
if (size(uval) < l2) then
!
! Figure out a good reallocation size!
!
isz = max((l2/i)*m,int(1.2*l2),l2+100)
call psb_realloc(isz,uval,info)
if (info == psb_success_) call psb_realloc(isz,uja,info)
if (info == psb_success_) call psb_realloc(isz,uplevs,info,pad=(m+1))
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
end if
uja(l2) = j
uval(l2) = row(j)
uplevs(l2) = rowlevs(j)
else if (ialg == mld_milu_n_) then
!
! MILU(k): add discarded entries to the diagonal one
!
d(i) = d(i) + row(j)
end if
!
! Re-initialize row(j) and rowlevs(j)
!
row(j) = czero
rowlevs(j) = -(m+1)
end if
end do
!
! Store the pointers to the first non occupied entry of in
! lval and uval
!
lirp(i+1) = l1 + 1
uirp(i+1) = l2 + 1
!
! Check the pivot size
!
if (abs(d(i)) < s_epstol) then
!
! Too small pivot: unstable factorization
!
info = psb_err_pivot_too_small_
int_err(1) = i
write(ch_err,'(g20.10)') d(i)
call psb_errpush(info,name,i_err=int_err,a_err=ch_err)
goto 9999
else
!
! Compute 1/pivot
!
d(i) = cone/d(i)
end if
!
! Scale the upper part
!
do j=uirp(i), uirp(i+1)-1
uval(j) = d(i)*uval(j)
end do
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine iluk_copyout
end subroutine mld_ciluk_fact

File diff suppressed because it is too large Load Diff

@ -99,7 +99,7 @@ subroutine mld_d_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
select case(sv%fact_type) select case(sv%fact_type)
case (mld_ilu_t_) case (psb_ilu_t_)
! !
! ILU(k,t) ! ILU(k,t)
! !
@ -113,17 +113,17 @@ subroutine mld_d_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
case(0:) case(0:)
! Fill-in >= 0 ! Fill-in >= 0
call mld_ilut_fact(sv%fill_in,sv%thresh,& call psb_ilut_fact(sv%fill_in,sv%thresh,&
& a, sv%l,sv%u,sv%d,info,blck=b) & a, sv%l,sv%u,sv%d,info,blck=b)
end select end select
if(info /= psb_success_) then if(info /= psb_success_) then
info=psb_err_from_subroutine_ info=psb_err_from_subroutine_
ch_err='mld_ilut_fact' ch_err='psb_ilut_fact'
call psb_errpush(info,name,a_err=ch_err) call psb_errpush(info,name,a_err=ch_err)
goto 9999 goto 9999
end if end if
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
! !
! ILU(k) and MILU(k) ! ILU(k) and MILU(k)
! !
@ -137,24 +137,24 @@ subroutine mld_d_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
! Fill-in 0 ! Fill-in 0
! Separate implementation of ILU(0) for better performance. ! Separate implementation of ILU(0) for better performance.
! There seems to be a problem with the separate implementation of MILU(0), ! There seems to be a problem with the separate implementation of MILU(0),
! contained into mld_ilu0_fact. This must be investigated. For the time being, ! contained into psb_ilu0_fact. This must be investigated. For the time being,
! resort to the implementation of MILU(k) with k=0. ! resort to the implementation of MILU(k) with k=0.
if (sv%fact_type == mld_ilu_n_) then if (sv%fact_type == psb_ilu_n_) then
call mld_ilu0_fact(sv%fact_type,a,sv%l,sv%u,& call psb_ilu0_fact(sv%fact_type,a,sv%l,sv%u,&
& sv%d,info,blck=b) & sv%d,info,blck=b)
else else
call mld_iluk_fact(sv%fill_in,sv%fact_type,& call psb_iluk_fact(sv%fill_in,sv%fact_type,&
& a,sv%l,sv%u,sv%d,info,blck=b) & a,sv%l,sv%u,sv%d,info,blck=b)
endif endif
case(1:) case(1:)
! Fill-in >= 1 ! Fill-in >= 1
! The same routine implements both ILU(k) and MILU(k) ! The same routine implements both ILU(k) and MILU(k)
call mld_iluk_fact(sv%fill_in,sv%fact_type,& call psb_iluk_fact(sv%fill_in,sv%fact_type,&
& a,sv%l,sv%u,sv%d,info,blck=b) & a,sv%l,sv%u,sv%d,info,blck=b)
end select end select
if (info /= psb_success_) then if (info /= psb_success_) then
info=psb_err_from_subroutine_ info=psb_err_from_subroutine_
ch_err='mld_iluk_fact' ch_err='psb_iluk_fact'
call psb_errpush(info,name,a_err=ch_err) call psb_errpush(info,name,a_err=ch_err)
goto 9999 goto 9999
end if end if

@ -1,666 +0,0 @@
!
!
! MLD2P4 version 2.2
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008-2018
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: mld_dilu0_fact.f90
!
! Subroutine: mld_dilu0_fact
! Version: real
! Contains: mld_dilu0_factint, ilu_copyin
!
! This routine computes either the ILU(0) or the MILU(0) factorization of
! the diagonal blocks of a distributed matrix. These factorizations are used
! to build the 'base preconditioner' (block-Jacobi preconditioner/solver,
! Additive Schwarz preconditioner) corresponding to a given level of a
! multilevel preconditioner.
!
! Details on the above factorizations can be found in
! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
! SIAM, 2003, Chapter 10.
!
! The local matrix is stored into a and blck, as specified in the description
! of the arguments below. The storage format for both the L and U factors is CSR.
! The diagonal of the U factor is stored separately (actually, the inverse of the
! diagonal entries is stored; this is then managed in the solve stage associated
! to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from a and blck into l (L factor),
! u (U factor, except its diagonal) and d (diagonal of U).
!
! This implementation of ILU(0)/MILU(0) is faster than the implementation in
! mld_ziluk_fct (the latter routine performs the more general ILU(k)/MILU(k)).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The MILU(0) factorization is computed if ialg = 2 (= mld_milu_n_);
! the ILU(0) factorization otherwise.
! a - type(psb_dspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_as_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! l - type(psb_dspmat_type), input/output.
! The L factor in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! u - type(psb_dspmat_type), input/output.
! The U factor (except its diagonal) in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! d - real(psb_dpk_), dimension(:), input/output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! info - integer, output.
! Error code.
! blck - type(psb_dspmat_type), input, optional, target.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then blck is empty.
!
subroutine mld_dilu0_fact(ialg,a,l,u,d,info,blck, upd)
use psb_base_mod
use mld_d_ilu_fact_mod, mld_protect_name => mld_dilu0_fact
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_dspmat_type),intent(in) :: a
type(psb_dspmat_type),intent(inout) :: l,u
real(psb_dpk_), intent(inout) :: d(:)
integer(psb_ipk_), intent(out) :: info
type(psb_dspmat_type),intent(in), optional, target :: blck
character, intent(in), optional :: upd
! Local variables
integer(psb_ipk_) :: l1, l2, m, err_act
type(psb_dspmat_type), pointer :: blck_
type(psb_d_csr_sparse_mat) :: ll, uu
character :: upd_
character(len=20) :: name, ch_err
name='mld_dilu0_fact'
info = psb_success_
call psb_erractionsave(err_act)
!
! Point to / allocate memory for the incomplete factorization
!
if (present(blck)) then
blck_ => blck
else
allocate(blck_,stat=info)
if (info == psb_success_) call blck_%csall(izero,izero,info,ione)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csall'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
if (present(upd)) then
upd_ = psb_toupper(upd)
else
upd_ = 'F'
end if
m = a%get_nrows() + blck_%get_nrows()
if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.&
& (m > size(d)) ) then
write(0,*) 'Wrong allocation status for L,D,U? ',&
& l%get_nrows(),size(d),u%get_nrows()
info = -1
return
end if
call l%mv_to(ll)
call u%mv_to(uu)
!
! Compute the ILU(0) or the MILU(0) factorization, depending on ialg
!
call mld_dilu0_factint(ialg,a,blck_,&
& d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,upd_,info)
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='mld_dilu0_factint'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Store information on the L and U sparse matrices
!
call l%mv_from(ll)
call l%set_triangle()
call l%set_unit()
call l%set_lower()
call u%mv_from(uu)
call u%set_triangle()
call u%set_unit()
call u%set_upper()
!
! Nullify pointer / deallocate memory
!
if (present(blck)) then
blck_ => null()
else
call blck_%free()
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(blck_)
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
!
! Subroutine: mld_dilu0_factint
! Version: real
! Note: internal subroutine of mld_dilu0_fact.
!
! This routine computes either the ILU(0) or the MILU(0) factorization of the
! diagonal blocks of a distributed matrix.
! These factorizations are used to build the 'base preconditioner'
! (block-Jacobi preconditioner/solver, Additive Schwarz
! preconditioner) corresponding to a given level of a multilevel preconditioner.
!
! The local matrix is stored into a and b, as specified in the
! description of the arguments below. The storage format for both the L and U
! factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the
! solve stage associated to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from the sparse matrix structures a
! and b into the arrays lval, uval, d (L, U without its diagonal, diagonal of U).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The ILU(0) factorization is computed if ialg = 1 (= mld_ilu_n_),
! the MILU(0) one if ialg = 2 (= mld_milu_n_); other values
! are not allowed.
! m - integer, output.
! The total number of rows of the local matrix to be factorized,
! i.e. ma+mb.
! ma - integer, input
! The number of rows of the local submatrix stored into a.
! a - type(psb_dspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that, if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! mb - integer, input.
! The number of rows of the local submatrix stored into b.
! b - type(psb_dspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been
! reordered (see mld_fact_bld), then b does not contain any row.
! d - real(psb_dpk_), dimension(:), output.
! The inverse of the diagonal entries of the U factor in the
! incomplete factorization.
! lval - real(psb_dpk_), dimension(:), input/output.
! The entries of U are stored according to the CSR format.
! The L factor in the incomplete factorization.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! according to the CSR storage format.
! lirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor in lval, according to the CSR storage format.
! uval - real(psb_dpk_), dimension(:), input/output.
! The U factor in the incomplete factorization.
! The entries of U are stored according to the CSR format.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor,
! according to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor in uval, according to the CSR storage format.
! l1 - integer, output.
! The number of nonzero entries in lval.
! l2 - integer, output.
! The number of nonzero entries in uval.
! info - integer, output.
! Error code.
!
subroutine mld_dilu0_factint(ialg,a,b,&
& d,lval,lja,lirp,uval,uja,uirp,l1,l2,upd,info)
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_dspmat_type),intent(in) :: a,b
integer(psb_ipk_),intent(inout) :: l1,l2,info
integer(psb_ipk_), intent(inout) :: lja(:),lirp(:),uja(:),uirp(:)
real(psb_dpk_), intent(inout) :: lval(:),uval(:),d(:)
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: i,j,k,l,low1,low2,kk,jj,ll, ktrw,err_act, m
integer(psb_ipk_) :: ma,mb
real(psb_dpk_) :: dia,temp
integer(psb_ipk_), parameter :: nrb=16
type(psb_d_coo_sparse_mat) :: trw
integer(psb_ipk_) :: int_err(5)
character(len=20) :: name, ch_err
name='mld_dilu0_factint'
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
ma = a%get_nrows()
mb = b%get_nrows()
select case(ialg)
case(mld_ilu_n_,mld_milu_n_)
! Ok
case default
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name,&
& i_err=(/ione,ialg,izero,izero,izero/))
goto 9999
end select
call trw%allocate(izero,izero,ione)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_all'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
m = ma+mb
if (psb_toupper(upd) == 'F' ) then
lirp(1) = 1
uirp(1) = 1
l1 = 0
l2 = 0
!
! Cycle over the matrix rows
!
do i = 1, m
d(i) = dzero
if (i <= ma) then
!
! Copy the i-th local row of the matrix, stored in a,
! into lval/d(i)/uval
!
call ilu_copyin(i,ma,a,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
else
!
! Copy the i-th local row of the matrix, stored in b
! (as (i-ma)-th row), into lval/d(i)/uval
!
call ilu_copyin(i-ma,mb,b,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
endif
lirp(i+1) = l1 + 1
uirp(i+1) = l2 + 1
dia = d(i)
do kk = lirp(i), lirp(i+1) - 1
!
! Compute entry l(i,k) (lower factor L) of the incomplete
! factorization
!
temp = lval(kk)
k = lja(kk)
lval(kk) = temp*d(k)
!
! Update the rest of row i (lower and upper factors L and U)
! using l(i,k)
!
low1 = kk + 1
low2 = uirp(i)
!
updateloop: do jj = uirp(k), uirp(k+1) - 1
!
j = uja(jj)
!
if (j < i) then
!
! search l(i,*) (i-th row of L) for a matching index j
!
do ll = low1, lirp(i+1) - 1
l = lja(ll)
if (l > j) then
low1 = ll
exit
else if (l == j) then
lval(ll) = lval(ll) - temp*uval(jj)
low1 = ll + 1
cycle updateloop
end if
enddo
else if (j == i) then
!
! j=i: update the diagonal
!
dia = dia - temp*uval(jj)
cycle updateloop
!
else if (j > i) then
!
! search u(i,*) (i-th row of U) for a matching index j
!
do ll = low2, uirp(i+1) - 1
l = uja(ll)
if (l > j) then
low2 = ll
exit
else if (l == j) then
uval(ll) = uval(ll) - temp*uval(jj)
low2 = ll + 1
cycle updateloop
end if
enddo
end if
!
! If we get here we missed the cycle updateloop, which means
! that this entry does not match; thus we accumulate on the
! diagonal for MILU(0).
!
if (ialg == mld_milu_n_) then
dia = dia - temp*uval(jj)
end if
enddo updateloop
enddo
!
! Check the pivot size
!
if (abs(dia) < d_epstol) then
!
! Too small pivot: unstable factorization
!
info = psb_err_pivot_too_small_
int_err(1) = i
write(ch_err,'(g20.10)') abs(dia)
call psb_errpush(info,name,i_err=int_err,a_err=ch_err)
goto 9999
else
!
! Compute 1/pivot
!
dia = done/dia
end if
d(i) = dia
!
! Scale row i of upper triangle
!
do kk = uirp(i), uirp(i+1) - 1
uval(kk) = uval(kk)*dia
enddo
enddo
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call trw%free()
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_dilu0_factint
!
! Subroutine: ilu_copyin
! Version: real
! Note: internal subroutine of mld_dilu0_fact
!
! This routine copies a row of a sparse matrix A, stored in the psb_dspmat_type
! data structure a, into the arrays lval and uval and into the scalar variable
! dia, corresponding to the lower and upper triangles of A and to the diagonal
! entry of the row, respectively. The entries in lval and uval are stored
! according to the CSR format; the corresponding column indices are stored in
! the arrays lja and uja.
!
! If the sparse matrix is in CSR format, a 'straight' copy is performed;
! otherwise psb_sp_getblk is used to extract a block of rows, which is then
! copied into lval, dia, uval row by row, through successive calls to
! ilu_copyin.
!
! The routine is used by mld_dilu0_factint in the computation of the ILU(0)/MILU(0)
! factorization of a local sparse matrix.
!
! TODO: modify the routine to allow copying into output L and U that are
! already filled with indices; this would allow computing an ILU(k) pattern,
! then use the ILU(0) internal for subsequent calls with the same pattern.
!
! Arguments:
! i - integer, input.
! The local index of the row to be extracted from the
! sparse matrix structure a.
! m - integer, input.
! The number of rows of the local matrix stored into a.
! a - type(psb_dspmat_type), input.
! The sparse matrix structure containing the row to be copied.
! jd - integer, input.
! The column index of the diagonal entry of the row to be
! copied.
! jmin - integer, input.
! Minimum valid column index.
! jmax - integer, input.
! Maximum valid column index.
! The output matrix will contain a clipped copy taken from
! a(1:m,jmin:jmax).
! l1 - integer, input/output.
! Pointer to the last occupied entry of lval.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the lower triangle
! copied in lval row by row (see mld_dilu0_factint), according
! to the CSR storage format.
! lval - real(psb_dpk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! lower triangle are copied.
! dia - real(psb_dpk_), output.
! The diagonal entry of the copied row.
! l2 - integer, input/output.
! Pointer to the last occupied entry of uval.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the upper triangle
! copied in uval row by row (see mld_dilu0_factint), according
! to the CSR storage format.
! uval - real(psb_dpk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! upper triangle are copied.
! ktrw - integer, input/output.
! The index identifying the last entry taken from the
! staging buffer trw. See below.
! trw - type(psb_dspmat_type), input/output.
! A staging buffer. If the matrix A is not in CSR format, we use
! the psb_sp_getblk routine and store its output in trw; when we
! need to call psb_sp_getblk we do it for a block of rows, and then
! we consume them from trw in successive calls to this routine,
! until we empty the buffer. Thus we will make a call to psb_sp_getblk
! every nrb calls to copyin. If A is in CSR format it is unused.
!
subroutine ilu_copyin(i,m,a,jd,jmin,jmax,l1,lja,lval,&
& dia,l2,uja,uval,ktrw,trw,upd)
use psb_base_mod
implicit none
! Arguments
type(psb_dspmat_type), intent(in) :: a
type(psb_d_coo_sparse_mat), intent(inout) :: trw
integer(psb_ipk_), intent(in) :: i,m,jd,jmin,jmax
integer(psb_ipk_), intent(inout) :: ktrw,l1,l2
integer(psb_ipk_), intent(inout) :: lja(:), uja(:)
real(psb_dpk_), intent(inout) :: lval(:), uval(:), dia
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: k,j,info,irb, nz
integer(psb_ipk_), parameter :: nrb=40
character(len=20), parameter :: name='ilu_copyin'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
if (psb_toupper(upd) == 'F') then
select type(aa => a%a)
type is (psb_d_csr_sparse_mat)
!
! Take a fast shortcut if the matrix is stored in CSR format
!
do j = aa%irp(i), aa%irp(i+1) - 1
k = aa%ja(j)
! write(0,*)'KKKKK',k
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = aa%val(j)
lja(l1) = k
else if (k == jd) then
dia = aa%val(j)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = aa%val(j)
uja(l2) = k
end if
enddo
class default
!
! Otherwise use psb_sp_getblk, slower but able (in principle) of
! handling any format. In this case, a block of rows is extracted
! instead of a single row, for performance reasons, and these
! rows are copied one by one into lval, dia, uval, through
! successive calls to ilu_copyin.
!
if ((mod(i,nrb) == 1).or.(nrb == 1)) then
irb = min(m-i+1,nrb)
call aa%csget(i,i+irb-1,trw,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csget'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
ktrw=1
end if
nz = trw%get_nzeros()
do
if (ktrw > nz) exit
if (trw%ia(ktrw) > i) exit
k = trw%ja(ktrw)
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = trw%val(ktrw)
lja(l1) = k
else if (k == jd) then
dia = trw%val(ktrw)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = trw%val(ktrw)
uja(l2) = k
end if
ktrw = ktrw + 1
enddo
end select
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine ilu_copyin
end subroutine mld_dilu0_fact

@ -1,969 +0,0 @@
!
!
! MLD2P4 version 2.2
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008-2018
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: mld_diluk_fact.f90
!
! Subroutine: mld_diluk_fact
! Version: real
! Contains: mld_diluk_factint, iluk_copyin, iluk_fact, iluk_copyout.
!
! This routine computes either the ILU(k) or the MILU(k) factorization of the
! diagonal blocks of a distributed matrix. These factorizations are used to
! build the 'base preconditioner' (block-Jacobi preconditioner/solver,
! Additive Schwarz preconditioner) corresponding to a certain level of a
! multilevel preconditioner.
!
! Details on the above factorizations can be found in
! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
! SIAM, 2003, Chapter 10.
!
! The local matrix is stored into a and blck, as specified in
! the description of the arguments below. The storage format for both the L and
! U factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the solve
! stage associated to the ILU(k)/MILU(k) factorization).
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The ILU(k) factorization is computed if ialg = 1 (= mld_ilu_n_);
! the MILU(k) one if ialg = 2 (= mld_milu_n_); other values are
! not allowed.
! a - type(psb_dspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! l - type(psb_dspmat_type), input/output.
! The L factor in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! u - type(psb_dspmat_type), input/output.
! The U factor (except its diagonal) in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! d - real(psb_dpk_), dimension(:), input/output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! info - integer, output.
! Error code.
! blck - type(psb_dspmat_type), input, optional, target.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then blck does not contain any row.
!
subroutine mld_diluk_fact(fill_in,ialg,a,l,u,d,info,blck)
use psb_base_mod
use mld_d_ilu_fact_mod, mld_protect_name => mld_diluk_fact
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg
integer(psb_ipk_), intent(out) :: info
type(psb_dspmat_type),intent(in) :: a
type(psb_dspmat_type),intent(inout) :: l,u
type(psb_dspmat_type),intent(in), optional, target :: blck
real(psb_dpk_), intent(inout) :: d(:)
! Local Variables
integer(psb_ipk_) :: l1, l2, m, err_act
type(psb_dspmat_type), pointer :: blck_
type(psb_d_csr_sparse_mat) :: ll, uu
character(len=20) :: name, ch_err
name='mld_diluk_fact'
info = psb_success_
call psb_erractionsave(err_act)
!
! Point to / allocate memory for the incomplete factorization
!
if (present(blck)) then
blck_ => blck
else
allocate(blck_,stat=info)
if (info == psb_success_) call blck_%csall(izero,izero,info,ione)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csall'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
m = a%get_nrows() + blck_%get_nrows()
if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.&
& (m > size(d)) ) then
write(0,*) 'Wrong allocation status for L,D,U? ',&
& l%get_nrows(),size(d),u%get_nrows()
info = -1
return
end if
call l%mv_to(ll)
call u%mv_to(uu)
!
! Compute the ILU(k) or the MILU(k) factorization, depending on ialg
!
call mld_diluk_factint(fill_in,ialg,a,blck_,&
& d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='mld_diluk_factint'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Store information on the L and U sparse matrices
!
call l%mv_from(ll)
call l%set_triangle()
call l%set_unit()
call l%set_lower()
call u%mv_from(uu)
call u%set_triangle()
call u%set_unit()
call u%set_upper()
!
! Nullify pointer / deallocate memory
!
if (present(blck)) then
blck_ => null()
else
call blck_%free()
deallocate(blck_,stat=info)
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
!
! Subroutine: mld_diluk_factint
! Version: real
! Note: internal subroutine of mld_diluk_fact
!
! This routine computes either the ILU(k) or the MILU(k) factorization of the
! diagonal blocks of a distributed matrix. These factorizations are used to build
! the 'base preconditioner' (block-Jacobi preconditioner/solver, Additive Schwarz
! preconditioner) corresponding to a certain level of a multilevel preconditioner.
!
! The local matrix is stored into a and b, as specified in the
! description of the arguments below. The storage format for both the L and U
! factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the
! solve stage associated to the ILU(k)/MILU(k) factorization).
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The MILU(k) factorization is computed if ialg = 2 (= mld_milu_n_);
! the ILU(k) factorization otherwise.
! m - integer, output.
! The total number of rows of the local matrix to be factorized,
! i.e. ma+mb.
! a - type(psb_dspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that, if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! b - type(psb_dspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then b does not contain any row.
! d - real(psb_dpk_), dimension(:), output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! laspk - real(psb_dpk_), dimension(:), input/output.
! The L factor in the incomplete factorization.
! lia1 - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! according to the CSR storage format.
! lia2 - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor in laspk, according to the CSR storage format.
! uval - real(psb_dpk_), dimension(:), input/output.
! The U factor in the incomplete factorization.
! The entries of U are stored according to the CSR format.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor,
! according to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor in uval, according to the CSR storage format.
! l1 - integer, output
! The number of nonzero entries in laspk.
! l2 - integer, output
! The number of nonzero entries in uval.
! info - integer, output.
! Error code.
!
subroutine mld_diluk_factint(fill_in,ialg,a,b,&
& d,lval,lja,lirp,uval,uja,uirp,l1,l2,info)
use psb_base_mod
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg
type(psb_dspmat_type),intent(in) :: a,b
integer(psb_ipk_),intent(inout) :: l1,l2,info
integer(psb_ipk_), allocatable, intent(inout) :: lja(:),lirp(:),uja(:),uirp(:)
real(psb_dpk_), allocatable, intent(inout) :: lval(:),uval(:)
real(psb_dpk_), intent(inout) :: d(:)
! Local variables
integer(psb_ipk_) :: ma,mb,i, ktrw,err_act,nidx, m
integer(psb_ipk_), allocatable :: uplevs(:), rowlevs(:),idxs(:)
real(psb_dpk_), allocatable :: row(:)
type(psb_i_heap) :: heap
type(psb_d_coo_sparse_mat) :: trw
character(len=20), parameter :: name='mld_diluk_factint'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
select case(ialg)
case(mld_ilu_n_,mld_milu_n_)
! Ok
case default
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name,&
& i_err=(/itwo,ialg,izero,izero,izero/))
goto 9999
end select
if (fill_in < 0) then
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name, &
& i_err=(/ione,fill_in,izero,izero,izero/))
goto 9999
end if
ma = a%get_nrows()
mb = b%get_nrows()
m = ma+mb
!
! Allocate a temporary buffer for the iluk_copyin function
!
call trw%allocate(izero,izero,ione)
if (info == psb_success_) call psb_ensure_size(m+1,lirp,info)
if (info == psb_success_) call psb_ensure_size(m+1,uirp,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='psb_sp_all')
goto 9999
end if
l1=0
l2=0
lirp(1) = 1
uirp(1) = 1
!
! Allocate memory to hold the entries of a row and the corresponding
! fill levels
!
allocate(uplevs(size(uval)),rowlevs(m),row(m),stat=info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
uplevs(:) = m+1
row(:) = dzero
rowlevs(:) = -(m+1)
!
! Cycle over the matrix rows
!
do i = 1, m
!
! At each iteration of the loop we keep in a heap the column indices
! affected by the factorization. The heap is initialized and filled
! in the iluk_copyin routine, and updated during the elimination, in
! the iluk_fact routine. The heap is ideal because at each step we need
! the lowest index, but we also need to insert new items, and the heap
! allows to do both in log time.
!
d(i) = dzero
if (i<=ma) then
!
! Copy into trw the i-th local row of the matrix, stored in a
!
call iluk_copyin(i,ma,a,ione,m,row,rowlevs,heap,ktrw,trw,info)
else
!
! Copy into trw the i-th local row of the matrix, stored in b
! (as (i-ma)-th row)
!
call iluk_copyin(i-ma,mb,b,ione,m,row,rowlevs,heap,ktrw,trw,info)
endif
! Do an elimination step on the current row. It turns out we only
! need to keep track of fill levels for the upper triangle, hence we
! do not have a lowlevs variable.
!
if (info == psb_success_) call iluk_fact(fill_in,i,row,rowlevs,heap,&
& d,uja,uirp,uval,uplevs,nidx,idxs,info)
!
! Copy the row into lval/d(i)/uval
!
if (info == psb_success_) call iluk_copyout(fill_in,ialg,i,m,row,rowlevs,nidx,idxs,&
& l1,l2,lja,lirp,lval,d,uja,uirp,uval,uplevs,info)
if (info /= psb_success_) then
info=psb_err_internal_error_
call psb_errpush(info,name,a_err='Copy/factor loop')
goto 9999
end if
end do
!
! And we're done, so deallocate the memory
!
deallocate(uplevs,rowlevs,row,stat=info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Deallocate')
goto 9999
end if
if (info == psb_success_) call trw%free()
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_diluk_factint
!
! Subroutine: iluk_copyin
! Version: real
! Note: internal subroutine of mld_diluk_fact
!
! This routine copies a row of a sparse matrix A, stored in the sparse matrix
! structure a, into the array row and stores into a heap the column indices of
! the nonzero entries of the copied row. The output array row is such that it
! contains a full row of A, i.e. it contains also the zero entries of the row.
! This is useful for the elimination step performed by iluk_fact after the call
! to iluk_copyin (see mld_iluk_factint).
! The routine also sets to zero the entries of the array rowlevs corresponding
! to the nonzero entries of the copied row (see the description of the arguments
! below).
!
! If the sparse matrix is in CSR format, a 'straight' copy is performed;
! otherwise psb_sp_getblk is used to extract a block of rows, which is then
! copied, row by row, into the array row, through successive calls to
! ilu_copyin.
!
! This routine is used by mld_diluk_factint in the computation of the
! ILU(k)/MILU(k) factorization of a local sparse matrix.
!
!
! Arguments:
! i - integer, input.
! The local index of the row to be extracted from the
! sparse matrix structure a.
! m - integer, input.
! The number of rows of the local matrix stored into a.
! a - type(psb_dspmat_type), input.
! The sparse matrix structure containing the row to be copied.
! jmin - integer, input.
! The minimum valid column index.
! jmax - integer, input.
! The maximum valid column index.
! The output matrix will contain a clipped copy taken from
! a(1:m,jmin:jmax).
! row - real(psb_dpk_), dimension(:), input/output.
! In input it is the null vector (see mld_iluk_factint and
! iluk_copyout). In output it contains the row extracted
! from the matrix A. It actually contains a full row, i.e.
! it contains also the zero entries of the row.
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) = -(m+1) for k=1,...,m. In output
! rowlevs(k) = 0 for 1 <= k <= jmax and A(i,k) /= 0, for
! future use in iluk_fact.
! heap - type(psb_i_heap), input/output.
! The heap containing the column indices of the nonzero
! entries in the array row.
! Note: this argument is intent(inout) and not only intent(out)
! to retain its allocation, done by psb_init_heap inside this
! routine.
! ktrw - integer, input/output.
! The index identifying the last entry taken from the
! staging buffer trw. See below.
! trw - type(psb_dspmat_type), input/output.
! A staging buffer. If the matrix A is not in CSR format, we use
! the psb_sp_getblk routine and store its output in trw; when we
! need to call psb_sp_getblk we do it for a block of rows, and then
! we consume them from trw in successive calls to this routine,
! until we empty the buffer. Thus we will make a call to psb_sp_getblk
! every nrb calls to copyin. If A is in CSR format it is unused.
!
subroutine iluk_copyin(i,m,a,jmin,jmax,row,rowlevs,heap,ktrw,trw,info)
use psb_base_mod
implicit none
! Arguments
type(psb_dspmat_type), intent(in) :: a
type(psb_d_coo_sparse_mat), intent(inout) :: trw
integer(psb_ipk_), intent(in) :: i,m,jmin,jmax
integer(psb_ipk_), intent(inout) :: ktrw,info
integer(psb_ipk_), intent(inout) :: rowlevs(:)
real(psb_dpk_), intent(inout) :: row(:)
type(psb_i_heap), intent(inout) :: heap
! Local variables
integer(psb_ipk_) :: k,j,irb,err_act,nz
integer(psb_ipk_), parameter :: nrb=40
character(len=20), parameter :: name='iluk_copyin'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
call heap%init(info)
select type (aa=> a%a)
type is (psb_d_csr_sparse_mat)
!
! Take a fast shortcut if the matrix is stored in CSR format
!
do j = aa%irp(i), aa%irp(i+1) - 1
k = aa%ja(j)
if ((jmin<=k).and.(k<=jmax)) then
row(k) = aa%val(j)
rowlevs(k) = 0
call heap%insert(k,info)
end if
end do
class default
!
! Otherwise use psb_sp_getblk, slower but able (in principle) of
! handling any format. In this case, a block of rows is extracted
! instead of a single row, for performance reasons, and these
! rows are copied one by one into the array row, through successive
! calls to iluk_copyin.
!
if ((mod(i,nrb) == 1).or.(nrb == 1)) then
irb = min(m-i+1,nrb)
call aa%csget(i,i+irb-1,trw,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_getblk'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
ktrw=1
end if
nz = trw%get_nzeros()
do
if (ktrw > nz) exit
if (trw%ia(ktrw) > i) exit
k = trw%ja(ktrw)
if ((jmin<=k).and.(k<=jmax)) then
row(k) = trw%val(ktrw)
rowlevs(k) = 0
call heap%insert(k,info)
end if
ktrw = ktrw + 1
enddo
end select
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine iluk_copyin
!
! Subroutine: iluk_fact
! Version: real
! Note: internal subroutine of mld_diluk_fact
!
! This routine does an elimination step of the ILU(k) factorization on a
! single matrix row (see the calling routine mld_iluk_factint).
!
! This step is also the base for a MILU(k) elimination step on the row (see
! iluk_copyout). This routine is used by mld_diluk_factint in the computation
! of the ILU(k)/MILU(k) factorization of a local sparse matrix.
!
! NOTE: it turns out we only need to keep track of the fill levels for
! the upper triangle.
!
!
! Arguments
! fill_in - integer, input.
! The fill-in level k in ILU(k).
! i - integer, input.
! The local index of the row to which the factorization is
! applied.
! row - real(psb_dpk_), dimension(:), input/output.
! In input it contains the row to which the elimination step
! has to be applied. In output it contains the row after the
! elimination step. It actually contains a full row, i.e.
! it contains also the zero entries of the row.
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) = 0 if the k-th entry of the row is
! nonzero, and rowlevs(k) = -(m+1) otherwise. In output
! rowlevs(k) contains the fill kevel of the k-th entry of
! the row after the current elimination step; rowlevs(k) = -(m+1)
! means that the k-th row entry is zero throughout the elimination
! step.
! heap - type(psb_i_heap), input/output.
! The heap containing the column indices of the nonzero entries
! in the processed row. In input it contains the indices concerning
! the row before the elimination step, while in output it contains
! the indices concerning the transformed row.
! d - real(psb_dpk_), input.
! The inverse of the diagonal entries of the part of the U factor
! above the current row (see iluk_copyout).
! uja - integer, dimension(:), input.
! The column indices of the nonzero entries of the part of the U
! factor above the current row, stored in uval row by row (see
! iluk_copyout, called by mld_diluk_factint), according to the CSR
! storage format.
! uirp - integer, dimension(:), input.
! The indices identifying the first nonzero entry of each row of
! the U factor above the current row, stored in uval row by row
! (see iluk_copyout, called by mld_diluk_factint), according to
! the CSR storage format.
! uval - real(psb_dpk_), dimension(:), input.
! The entries of the U factor above the current row (except the
! diagonal ones), stored according to the CSR format.
! uplevs - integer, dimension(:), input.
! The fill levels of the nonzero entries in the part of the
! U factor above the current row.
! nidx - integer, output.
! The number of entries of the array row that have been
! examined during the elimination step. This will be used
! by the routine iluk_copyout.
! idxs - integer, dimension(:), allocatable, input/output.
! The indices of the entries of the array row that have been
! examined during the elimination step.This will be used by
! by the routine iluk_copyout.
! Note: this argument is intent(inout) and not only intent(out)
! to retain its allocation, done by this routine.
!
subroutine iluk_fact(fill_in,i,row,rowlevs,heap,d,uja,uirp,uval,uplevs,nidx,idxs,info)
use psb_base_mod
implicit none
! Arguments
type(psb_i_heap), intent(inout) :: heap
integer(psb_ipk_), intent(in) :: i, fill_in
integer(psb_ipk_), intent(inout) :: nidx,info
integer(psb_ipk_), intent(inout) :: rowlevs(:)
integer(psb_ipk_), allocatable, intent(inout) :: idxs(:)
integer(psb_ipk_), intent(inout) :: uja(:),uirp(:),uplevs(:)
real(psb_dpk_), intent(inout) :: row(:), uval(:),d(:)
! Local variables
integer(psb_ipk_) :: k,j,lrwk,jj,lastk, iret
real(psb_dpk_) :: rwk
info = psb_success_
if (.not.allocated(idxs)) then
allocate(idxs(200),stat=info)
if (info /= psb_success_) return
endif
nidx = 0
lastk = -1
!
! Do while there are indices to be processed
!
do
! Beware: (iret < 0) means that the heap is empty, not an error.
call heap%get_first(k,iret)
if (iret < 0) return
!
! Just in case an index has been put on the heap more than once.
!
if (k == lastk) cycle
lastk = k
nidx = nidx + 1
if (nidx>size(idxs)) then
call psb_realloc(nidx+psb_heap_resize,idxs,info)
if (info /= psb_success_) return
end if
idxs(nidx) = k
if ((row(k) /= dzero).and.(rowlevs(k) <= fill_in).and.(k<i)) then
!
! Note: since U is scaled while copying it out (see iluk_copyout),
! we can use rwk in the update below
!
rwk = row(k)
row(k) = row(k) * d(k) ! d(k) == 1/a(k,k)
lrwk = rowlevs(k)
do jj=uirp(k),uirp(k+1)-1
j = uja(jj)
if (j<=k) then
info = -i
return
endif
!
! Insert the index into the heap for further processing.
! The fill levels are initialized to a negative value. If we find
! one, it means that it is an as yet untouched index, so we need
! to insert it; otherwise it is already on the heap, there is no
! need to insert it more than once.
!
if (rowlevs(j)<0) then
call heap%insert(j,info)
if (info /= psb_success_) return
rowlevs(j) = abs(rowlevs(j))
end if
!
! Update row(j) and the corresponding fill level
!
row(j) = row(j) - rwk * uval(jj)
rowlevs(j) = min(rowlevs(j),lrwk+uplevs(jj)+1)
end do
end if
end do
end subroutine iluk_fact
!
! Subroutine: iluk_copyout
! Version: real
! Note: internal subroutine of mld_diluk_fact
!
! This routine copies a matrix row, computed by iluk_fact by applying an
! elimination step of the ILU(k) factorization, into the arrays lval, uval,
! d, corresponding to the L factor, the U factor and the diagonal of U,
! respectively.
!
! Note that
! - the part of the row stored into uval is scaled by the corresponding diagonal
! entry, according to the LDU form of the incomplete factorization;
! - the inverse of the diagonal entries of U is actually stored into d; this is
! then managed in the solve stage associated to the ILU(k)/MILU(k) factorization;
! - if the MILU(k) factorization has been required (ialg == mld_milu_n_), the
! row entries discarded because their fill levels are too high are added to
! the diagonal entry of the row;
! - the row entries are stored in lval and uval according to the CSR format;
! - the arrays row and rowlevs are re-initialized for future use in mld_iluk_fact
! (see also iluk_copyin and iluk_fact).
!
! This routine is used by mld_diluk_factint in the computation of the
! ILU(k)/MILU(k) factorization of a local sparse matrix.
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization considered. The MILU(k)
! factorization is computed if ialg = 2 (= mld_milu_n_); the
! ILU(k) factorization otherwise.
! i - integer, input.
! The local index of the row to be copied.
! m - integer, input.
! The number of rows of the local matrix under factorization.
! row - real(psb_dpk_), dimension(:), input/output.
! It contains, input, the row to be copied, and, in output,
! the null vector (the latter is used in the next call to
! iluk_copyin in mld_iluk_fact).
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) contains the fill kevel of the k-th entry
! of the row to be copied. rowlevs(k) = -(m+1) indicates that
! this entry is zero; however, any rowlevs(k) = -(m+1) is not
! used by the routine. In output rowlevs(k) = -(m+1) for all k's
! (this is an inizialization for the next call to iluk_copyin
! in mld_iluk_factint).
! nidx - integer, input.
! The number of entries of the array row that have been examined
! during the elimination step carried out by the routine iluk_fact.
! idxs - integer, dimension(:), allocatable, input.
! The indices of the entries of the array row that have been
! examined during the elimination step carried out by the routine
! iluk_fact.
! l1 - integer, input/output.
! Pointer to the last occupied entry of lval.
! l2 - integer, input/output.
! Pointer to the last occupied entry of uval.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! copied in lval row by row (see mld_diluk_factint), according
! to the CSR storage format.
! lirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor, copied in lval row by row (see
! mld_diluk_factint), according to the CSR storage format.
! lval - real(psb_dpk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! L factor are copied.
! d - real(psb_dpk_), dimension(:), input/output.
! The array where the inverse of the diagonal entry of the
! row is copied (only d(i) is used by the routine).
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor
! copied in uval row by row (see mld_diluk_factint), according
! to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor copied in uval row by row (see
! mld_zilu_fctint), according to the CSR storage format.
! uval - real(psb_dpk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! U factor are copied.
! uplevs - integer, dimension(:), input.
! The fill levels of the nonzero entries in the part of the
! U factor above the current row.
!
subroutine iluk_copyout(fill_in,ialg,i,m,row,rowlevs,nidx,idxs,&
& l1,l2,lja,lirp,lval,d,uja,uirp,uval,uplevs,info)
use psb_base_mod
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg, i, m, nidx
integer(psb_ipk_), intent(inout) :: l1, l2, info
integer(psb_ipk_), intent(inout) :: rowlevs(:), idxs(:)
integer(psb_ipk_), allocatable, intent(inout) :: uja(:), uirp(:), lja(:), lirp(:),uplevs(:)
real(psb_dpk_), allocatable, intent(inout) :: uval(:), lval(:)
real(psb_dpk_), intent(inout) :: row(:), d(:)
! Local variables
integer(psb_ipk_) :: j,isz,err_act,int_err(5),idxp
character(len=20), parameter :: name='mld_diluk_factint'
character(len=20) :: ch_err
info = psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
d(i) = dzero
do idxp=1,nidx
j = idxs(idxp)
if (j<i) then
!
! Copy the lower part of the row
!
if (rowlevs(j) <= fill_in) then
l1 = l1 + 1
if (size(lval) < l1) then
!
! Figure out a good reallocation size!
!
isz = (max((l1/i)*m,int(1.2*l1),l1+100))
call psb_realloc(isz,lval,info)
if (info == psb_success_) call psb_realloc(isz,lja,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
end if
lja(l1) = j
lval(l1) = row(j)
else if (ialg == mld_milu_n_) then
!
! MILU(k): add discarded entries to the diagonal one
!
d(i) = d(i) + row(j)
end if
!
! Re-initialize row(j) and rowlevs(j)
!
row(j) = dzero
rowlevs(j) = -(m+1)
else if (j == i) then
!
! Copy the diagonal entry of the row and re-initialize
! row(j) and rowlevs(j)
!
d(i) = d(i) + row(i)
row(i) = dzero
rowlevs(i) = -(m+1)
else if (j>i) then
!
! Copy the upper part of the row
!
if (rowlevs(j) <= fill_in) then
l2 = l2 + 1
if (size(uval) < l2) then
!
! Figure out a good reallocation size!
!
isz = max((l2/i)*m,int(1.2*l2),l2+100)
call psb_realloc(isz,uval,info)
if (info == psb_success_) call psb_realloc(isz,uja,info)
if (info == psb_success_) call psb_realloc(isz,uplevs,info,pad=(m+1))
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
end if
uja(l2) = j
uval(l2) = row(j)
uplevs(l2) = rowlevs(j)
else if (ialg == mld_milu_n_) then
!
! MILU(k): add discarded entries to the diagonal one
!
d(i) = d(i) + row(j)
end if
!
! Re-initialize row(j) and rowlevs(j)
!
row(j) = dzero
rowlevs(j) = -(m+1)
end if
end do
!
! Store the pointers to the first non occupied entry of in
! lval and uval
!
lirp(i+1) = l1 + 1
uirp(i+1) = l2 + 1
!
! Check the pivot size
!
if (abs(d(i)) < d_epstol) then
!
! Too small pivot: unstable factorization
!
info = psb_err_pivot_too_small_
int_err(1) = i
write(ch_err,'(g20.10)') d(i)
call psb_errpush(info,name,i_err=int_err,a_err=ch_err)
goto 9999
else
!
! Compute 1/pivot
!
d(i) = done/d(i)
end if
!
! Scale the upper part
!
do j=uirp(i), uirp(i+1)-1
uval(j) = d(i)*uval(j)
end do
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine iluk_copyout
end subroutine mld_diluk_fact

File diff suppressed because it is too large Load Diff

@ -99,7 +99,7 @@ subroutine mld_s_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
select case(sv%fact_type) select case(sv%fact_type)
case (mld_ilu_t_) case (psb_ilu_t_)
! !
! ILU(k,t) ! ILU(k,t)
! !
@ -113,17 +113,17 @@ subroutine mld_s_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
case(0:) case(0:)
! Fill-in >= 0 ! Fill-in >= 0
call mld_ilut_fact(sv%fill_in,sv%thresh,& call psb_ilut_fact(sv%fill_in,sv%thresh,&
& a, sv%l,sv%u,sv%d,info,blck=b) & a, sv%l,sv%u,sv%d,info,blck=b)
end select end select
if(info /= psb_success_) then if(info /= psb_success_) then
info=psb_err_from_subroutine_ info=psb_err_from_subroutine_
ch_err='mld_ilut_fact' ch_err='psb_ilut_fact'
call psb_errpush(info,name,a_err=ch_err) call psb_errpush(info,name,a_err=ch_err)
goto 9999 goto 9999
end if end if
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
! !
! ILU(k) and MILU(k) ! ILU(k) and MILU(k)
! !
@ -137,24 +137,24 @@ subroutine mld_s_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
! Fill-in 0 ! Fill-in 0
! Separate implementation of ILU(0) for better performance. ! Separate implementation of ILU(0) for better performance.
! There seems to be a problem with the separate implementation of MILU(0), ! There seems to be a problem with the separate implementation of MILU(0),
! contained into mld_ilu0_fact. This must be investigated. For the time being, ! contained into psb_ilu0_fact. This must be investigated. For the time being,
! resort to the implementation of MILU(k) with k=0. ! resort to the implementation of MILU(k) with k=0.
if (sv%fact_type == mld_ilu_n_) then if (sv%fact_type == psb_ilu_n_) then
call mld_ilu0_fact(sv%fact_type,a,sv%l,sv%u,& call psb_ilu0_fact(sv%fact_type,a,sv%l,sv%u,&
& sv%d,info,blck=b) & sv%d,info,blck=b)
else else
call mld_iluk_fact(sv%fill_in,sv%fact_type,& call psb_iluk_fact(sv%fill_in,sv%fact_type,&
& a,sv%l,sv%u,sv%d,info,blck=b) & a,sv%l,sv%u,sv%d,info,blck=b)
endif endif
case(1:) case(1:)
! Fill-in >= 1 ! Fill-in >= 1
! The same routine implements both ILU(k) and MILU(k) ! The same routine implements both ILU(k) and MILU(k)
call mld_iluk_fact(sv%fill_in,sv%fact_type,& call psb_iluk_fact(sv%fill_in,sv%fact_type,&
& a,sv%l,sv%u,sv%d,info,blck=b) & a,sv%l,sv%u,sv%d,info,blck=b)
end select end select
if (info /= psb_success_) then if (info /= psb_success_) then
info=psb_err_from_subroutine_ info=psb_err_from_subroutine_
ch_err='mld_iluk_fact' ch_err='psb_iluk_fact'
call psb_errpush(info,name,a_err=ch_err) call psb_errpush(info,name,a_err=ch_err)
goto 9999 goto 9999
end if end if

@ -1,666 +0,0 @@
!
!
! MLD2P4 version 2.2
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008-2018
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: mld_silu0_fact.f90
!
! Subroutine: mld_silu0_fact
! Version: real
! Contains: mld_silu0_factint, ilu_copyin
!
! This routine computes either the ILU(0) or the MILU(0) factorization of
! the diagonal blocks of a distributed matrix. These factorizations are used
! to build the 'base preconditioner' (block-Jacobi preconditioner/solver,
! Additive Schwarz preconditioner) corresponding to a given level of a
! multilevel preconditioner.
!
! Details on the above factorizations can be found in
! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
! SIAM, 2003, Chapter 10.
!
! The local matrix is stored into a and blck, as specified in the description
! of the arguments below. The storage format for both the L and U factors is CSR.
! The diagonal of the U factor is stored separately (actually, the inverse of the
! diagonal entries is stored; this is then managed in the solve stage associated
! to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from a and blck into l (L factor),
! u (U factor, except its diagonal) and d (diagonal of U).
!
! This implementation of ILU(0)/MILU(0) is faster than the implementation in
! mld_ziluk_fct (the latter routine performs the more general ILU(k)/MILU(k)).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The MILU(0) factorization is computed if ialg = 2 (= mld_milu_n_);
! the ILU(0) factorization otherwise.
! a - type(psb_sspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_as_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! l - type(psb_sspmat_type), input/output.
! The L factor in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! u - type(psb_sspmat_type), input/output.
! The U factor (except its diagonal) in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! d - real(psb_spk_), dimension(:), input/output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! info - integer, output.
! Error code.
! blck - type(psb_sspmat_type), input, optional, target.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then blck is empty.
!
subroutine mld_silu0_fact(ialg,a,l,u,d,info,blck, upd)
use psb_base_mod
use mld_s_ilu_fact_mod, mld_protect_name => mld_silu0_fact
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_sspmat_type),intent(in) :: a
type(psb_sspmat_type),intent(inout) :: l,u
real(psb_spk_), intent(inout) :: d(:)
integer(psb_ipk_), intent(out) :: info
type(psb_sspmat_type),intent(in), optional, target :: blck
character, intent(in), optional :: upd
! Local variables
integer(psb_ipk_) :: l1, l2, m, err_act
type(psb_sspmat_type), pointer :: blck_
type(psb_s_csr_sparse_mat) :: ll, uu
character :: upd_
character(len=20) :: name, ch_err
name='mld_silu0_fact'
info = psb_success_
call psb_erractionsave(err_act)
!
! Point to / allocate memory for the incomplete factorization
!
if (present(blck)) then
blck_ => blck
else
allocate(blck_,stat=info)
if (info == psb_success_) call blck_%csall(izero,izero,info,ione)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csall'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
if (present(upd)) then
upd_ = psb_toupper(upd)
else
upd_ = 'F'
end if
m = a%get_nrows() + blck_%get_nrows()
if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.&
& (m > size(d)) ) then
write(0,*) 'Wrong allocation status for L,D,U? ',&
& l%get_nrows(),size(d),u%get_nrows()
info = -1
return
end if
call l%mv_to(ll)
call u%mv_to(uu)
!
! Compute the ILU(0) or the MILU(0) factorization, depending on ialg
!
call mld_silu0_factint(ialg,a,blck_,&
& d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,upd_,info)
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='mld_silu0_factint'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Store information on the L and U sparse matrices
!
call l%mv_from(ll)
call l%set_triangle()
call l%set_unit()
call l%set_lower()
call u%mv_from(uu)
call u%set_triangle()
call u%set_unit()
call u%set_upper()
!
! Nullify pointer / deallocate memory
!
if (present(blck)) then
blck_ => null()
else
call blck_%free()
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(blck_)
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
!
! Subroutine: mld_silu0_factint
! Version: real
! Note: internal subroutine of mld_silu0_fact.
!
! This routine computes either the ILU(0) or the MILU(0) factorization of the
! diagonal blocks of a distributed matrix.
! These factorizations are used to build the 'base preconditioner'
! (block-Jacobi preconditioner/solver, Additive Schwarz
! preconditioner) corresponding to a given level of a multilevel preconditioner.
!
! The local matrix is stored into a and b, as specified in the
! description of the arguments below. The storage format for both the L and U
! factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the
! solve stage associated to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from the sparse matrix structures a
! and b into the arrays lval, uval, d (L, U without its diagonal, diagonal of U).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The ILU(0) factorization is computed if ialg = 1 (= mld_ilu_n_),
! the MILU(0) one if ialg = 2 (= mld_milu_n_); other values
! are not allowed.
! m - integer, output.
! The total number of rows of the local matrix to be factorized,
! i.e. ma+mb.
! ma - integer, input
! The number of rows of the local submatrix stored into a.
! a - type(psb_sspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that, if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! mb - integer, input.
! The number of rows of the local submatrix stored into b.
! b - type(psb_sspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been
! reordered (see mld_fact_bld), then b does not contain any row.
! d - real(psb_spk_), dimension(:), output.
! The inverse of the diagonal entries of the U factor in the
! incomplete factorization.
! lval - real(psb_spk_), dimension(:), input/output.
! The entries of U are stored according to the CSR format.
! The L factor in the incomplete factorization.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! according to the CSR storage format.
! lirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor in lval, according to the CSR storage format.
! uval - real(psb_spk_), dimension(:), input/output.
! The U factor in the incomplete factorization.
! The entries of U are stored according to the CSR format.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor,
! according to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor in uval, according to the CSR storage format.
! l1 - integer, output.
! The number of nonzero entries in lval.
! l2 - integer, output.
! The number of nonzero entries in uval.
! info - integer, output.
! Error code.
!
subroutine mld_silu0_factint(ialg,a,b,&
& d,lval,lja,lirp,uval,uja,uirp,l1,l2,upd,info)
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_sspmat_type),intent(in) :: a,b
integer(psb_ipk_),intent(inout) :: l1,l2,info
integer(psb_ipk_), intent(inout) :: lja(:),lirp(:),uja(:),uirp(:)
real(psb_spk_), intent(inout) :: lval(:),uval(:),d(:)
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: i,j,k,l,low1,low2,kk,jj,ll, ktrw,err_act, m
integer(psb_ipk_) :: ma,mb
real(psb_spk_) :: dia,temp
integer(psb_ipk_), parameter :: nrb=16
type(psb_s_coo_sparse_mat) :: trw
integer(psb_ipk_) :: int_err(5)
character(len=20) :: name, ch_err
name='mld_silu0_factint'
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
ma = a%get_nrows()
mb = b%get_nrows()
select case(ialg)
case(mld_ilu_n_,mld_milu_n_)
! Ok
case default
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name,&
& i_err=(/ione,ialg,izero,izero,izero/))
goto 9999
end select
call trw%allocate(izero,izero,ione)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_all'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
m = ma+mb
if (psb_toupper(upd) == 'F' ) then
lirp(1) = 1
uirp(1) = 1
l1 = 0
l2 = 0
!
! Cycle over the matrix rows
!
do i = 1, m
d(i) = szero
if (i <= ma) then
!
! Copy the i-th local row of the matrix, stored in a,
! into lval/d(i)/uval
!
call ilu_copyin(i,ma,a,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
else
!
! Copy the i-th local row of the matrix, stored in b
! (as (i-ma)-th row), into lval/d(i)/uval
!
call ilu_copyin(i-ma,mb,b,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
endif
lirp(i+1) = l1 + 1
uirp(i+1) = l2 + 1
dia = d(i)
do kk = lirp(i), lirp(i+1) - 1
!
! Compute entry l(i,k) (lower factor L) of the incomplete
! factorization
!
temp = lval(kk)
k = lja(kk)
lval(kk) = temp*d(k)
!
! Update the rest of row i (lower and upper factors L and U)
! using l(i,k)
!
low1 = kk + 1
low2 = uirp(i)
!
updateloop: do jj = uirp(k), uirp(k+1) - 1
!
j = uja(jj)
!
if (j < i) then
!
! search l(i,*) (i-th row of L) for a matching index j
!
do ll = low1, lirp(i+1) - 1
l = lja(ll)
if (l > j) then
low1 = ll
exit
else if (l == j) then
lval(ll) = lval(ll) - temp*uval(jj)
low1 = ll + 1
cycle updateloop
end if
enddo
else if (j == i) then
!
! j=i: update the diagonal
!
dia = dia - temp*uval(jj)
cycle updateloop
!
else if (j > i) then
!
! search u(i,*) (i-th row of U) for a matching index j
!
do ll = low2, uirp(i+1) - 1
l = uja(ll)
if (l > j) then
low2 = ll
exit
else if (l == j) then
uval(ll) = uval(ll) - temp*uval(jj)
low2 = ll + 1
cycle updateloop
end if
enddo
end if
!
! If we get here we missed the cycle updateloop, which means
! that this entry does not match; thus we accumulate on the
! diagonal for MILU(0).
!
if (ialg == mld_milu_n_) then
dia = dia - temp*uval(jj)
end if
enddo updateloop
enddo
!
! Check the pivot size
!
if (abs(dia) < s_epstol) then
!
! Too small pivot: unstable factorization
!
info = psb_err_pivot_too_small_
int_err(1) = i
write(ch_err,'(g20.10)') abs(dia)
call psb_errpush(info,name,i_err=int_err,a_err=ch_err)
goto 9999
else
!
! Compute 1/pivot
!
dia = sone/dia
end if
d(i) = dia
!
! Scale row i of upper triangle
!
do kk = uirp(i), uirp(i+1) - 1
uval(kk) = uval(kk)*dia
enddo
enddo
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call trw%free()
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_silu0_factint
!
! Subroutine: ilu_copyin
! Version: real
! Note: internal subroutine of mld_silu0_fact
!
! This routine copies a row of a sparse matrix A, stored in the psb_sspmat_type
! data structure a, into the arrays lval and uval and into the scalar variable
! dia, corresponding to the lower and upper triangles of A and to the diagonal
! entry of the row, respectively. The entries in lval and uval are stored
! according to the CSR format; the corresponding column indices are stored in
! the arrays lja and uja.
!
! If the sparse matrix is in CSR format, a 'straight' copy is performed;
! otherwise psb_sp_getblk is used to extract a block of rows, which is then
! copied into lval, dia, uval row by row, through successive calls to
! ilu_copyin.
!
! The routine is used by mld_silu0_factint in the computation of the ILU(0)/MILU(0)
! factorization of a local sparse matrix.
!
! TODO: modify the routine to allow copying into output L and U that are
! already filled with indices; this would allow computing an ILU(k) pattern,
! then use the ILU(0) internal for subsequent calls with the same pattern.
!
! Arguments:
! i - integer, input.
! The local index of the row to be extracted from the
! sparse matrix structure a.
! m - integer, input.
! The number of rows of the local matrix stored into a.
! a - type(psb_sspmat_type), input.
! The sparse matrix structure containing the row to be copied.
! jd - integer, input.
! The column index of the diagonal entry of the row to be
! copied.
! jmin - integer, input.
! Minimum valid column index.
! jmax - integer, input.
! Maximum valid column index.
! The output matrix will contain a clipped copy taken from
! a(1:m,jmin:jmax).
! l1 - integer, input/output.
! Pointer to the last occupied entry of lval.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the lower triangle
! copied in lval row by row (see mld_silu0_factint), according
! to the CSR storage format.
! lval - real(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! lower triangle are copied.
! dia - real(psb_spk_), output.
! The diagonal entry of the copied row.
! l2 - integer, input/output.
! Pointer to the last occupied entry of uval.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the upper triangle
! copied in uval row by row (see mld_silu0_factint), according
! to the CSR storage format.
! uval - real(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! upper triangle are copied.
! ktrw - integer, input/output.
! The index identifying the last entry taken from the
! staging buffer trw. See below.
! trw - type(psb_sspmat_type), input/output.
! A staging buffer. If the matrix A is not in CSR format, we use
! the psb_sp_getblk routine and store its output in trw; when we
! need to call psb_sp_getblk we do it for a block of rows, and then
! we consume them from trw in successive calls to this routine,
! until we empty the buffer. Thus we will make a call to psb_sp_getblk
! every nrb calls to copyin. If A is in CSR format it is unused.
!
subroutine ilu_copyin(i,m,a,jd,jmin,jmax,l1,lja,lval,&
& dia,l2,uja,uval,ktrw,trw,upd)
use psb_base_mod
implicit none
! Arguments
type(psb_sspmat_type), intent(in) :: a
type(psb_s_coo_sparse_mat), intent(inout) :: trw
integer(psb_ipk_), intent(in) :: i,m,jd,jmin,jmax
integer(psb_ipk_), intent(inout) :: ktrw,l1,l2
integer(psb_ipk_), intent(inout) :: lja(:), uja(:)
real(psb_spk_), intent(inout) :: lval(:), uval(:), dia
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: k,j,info,irb, nz
integer(psb_ipk_), parameter :: nrb=40
character(len=20), parameter :: name='ilu_copyin'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
if (psb_toupper(upd) == 'F') then
select type(aa => a%a)
type is (psb_s_csr_sparse_mat)
!
! Take a fast shortcut if the matrix is stored in CSR format
!
do j = aa%irp(i), aa%irp(i+1) - 1
k = aa%ja(j)
! write(0,*)'KKKKK',k
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = aa%val(j)
lja(l1) = k
else if (k == jd) then
dia = aa%val(j)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = aa%val(j)
uja(l2) = k
end if
enddo
class default
!
! Otherwise use psb_sp_getblk, slower but able (in principle) of
! handling any format. In this case, a block of rows is extracted
! instead of a single row, for performance reasons, and these
! rows are copied one by one into lval, dia, uval, through
! successive calls to ilu_copyin.
!
if ((mod(i,nrb) == 1).or.(nrb == 1)) then
irb = min(m-i+1,nrb)
call aa%csget(i,i+irb-1,trw,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csget'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
ktrw=1
end if
nz = trw%get_nzeros()
do
if (ktrw > nz) exit
if (trw%ia(ktrw) > i) exit
k = trw%ja(ktrw)
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = trw%val(ktrw)
lja(l1) = k
else if (k == jd) then
dia = trw%val(ktrw)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = trw%val(ktrw)
uja(l2) = k
end if
ktrw = ktrw + 1
enddo
end select
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine ilu_copyin
end subroutine mld_silu0_fact

@ -1,969 +0,0 @@
!
!
! MLD2P4 version 2.2
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008-2018
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: mld_siluk_fact.f90
!
! Subroutine: mld_siluk_fact
! Version: real
! Contains: mld_siluk_factint, iluk_copyin, iluk_fact, iluk_copyout.
!
! This routine computes either the ILU(k) or the MILU(k) factorization of the
! diagonal blocks of a distributed matrix. These factorizations are used to
! build the 'base preconditioner' (block-Jacobi preconditioner/solver,
! Additive Schwarz preconditioner) corresponding to a certain level of a
! multilevel preconditioner.
!
! Details on the above factorizations can be found in
! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
! SIAM, 2003, Chapter 10.
!
! The local matrix is stored into a and blck, as specified in
! the description of the arguments below. The storage format for both the L and
! U factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the solve
! stage associated to the ILU(k)/MILU(k) factorization).
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The ILU(k) factorization is computed if ialg = 1 (= mld_ilu_n_);
! the MILU(k) one if ialg = 2 (= mld_milu_n_); other values are
! not allowed.
! a - type(psb_sspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! l - type(psb_sspmat_type), input/output.
! The L factor in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! u - type(psb_sspmat_type), input/output.
! The U factor (except its diagonal) in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! d - real(psb_spk_), dimension(:), input/output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! info - integer, output.
! Error code.
! blck - type(psb_sspmat_type), input, optional, target.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then blck does not contain any row.
!
subroutine mld_siluk_fact(fill_in,ialg,a,l,u,d,info,blck)
use psb_base_mod
use mld_s_ilu_fact_mod, mld_protect_name => mld_siluk_fact
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg
integer(psb_ipk_), intent(out) :: info
type(psb_sspmat_type),intent(in) :: a
type(psb_sspmat_type),intent(inout) :: l,u
type(psb_sspmat_type),intent(in), optional, target :: blck
real(psb_spk_), intent(inout) :: d(:)
! Local Variables
integer(psb_ipk_) :: l1, l2, m, err_act
type(psb_sspmat_type), pointer :: blck_
type(psb_s_csr_sparse_mat) :: ll, uu
character(len=20) :: name, ch_err
name='mld_siluk_fact'
info = psb_success_
call psb_erractionsave(err_act)
!
! Point to / allocate memory for the incomplete factorization
!
if (present(blck)) then
blck_ => blck
else
allocate(blck_,stat=info)
if (info == psb_success_) call blck_%csall(izero,izero,info,ione)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csall'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
m = a%get_nrows() + blck_%get_nrows()
if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.&
& (m > size(d)) ) then
write(0,*) 'Wrong allocation status for L,D,U? ',&
& l%get_nrows(),size(d),u%get_nrows()
info = -1
return
end if
call l%mv_to(ll)
call u%mv_to(uu)
!
! Compute the ILU(k) or the MILU(k) factorization, depending on ialg
!
call mld_siluk_factint(fill_in,ialg,a,blck_,&
& d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='mld_siluk_factint'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Store information on the L and U sparse matrices
!
call l%mv_from(ll)
call l%set_triangle()
call l%set_unit()
call l%set_lower()
call u%mv_from(uu)
call u%set_triangle()
call u%set_unit()
call u%set_upper()
!
! Nullify pointer / deallocate memory
!
if (present(blck)) then
blck_ => null()
else
call blck_%free()
deallocate(blck_,stat=info)
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
!
! Subroutine: mld_siluk_factint
! Version: real
! Note: internal subroutine of mld_siluk_fact
!
! This routine computes either the ILU(k) or the MILU(k) factorization of the
! diagonal blocks of a distributed matrix. These factorizations are used to build
! the 'base preconditioner' (block-Jacobi preconditioner/solver, Additive Schwarz
! preconditioner) corresponding to a certain level of a multilevel preconditioner.
!
! The local matrix is stored into a and b, as specified in the
! description of the arguments below. The storage format for both the L and U
! factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the
! solve stage associated to the ILU(k)/MILU(k) factorization).
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The MILU(k) factorization is computed if ialg = 2 (= mld_milu_n_);
! the ILU(k) factorization otherwise.
! m - integer, output.
! The total number of rows of the local matrix to be factorized,
! i.e. ma+mb.
! a - type(psb_sspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that, if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! b - type(psb_sspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then b does not contain any row.
! d - real(psb_spk_), dimension(:), output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! laspk - real(psb_spk_), dimension(:), input/output.
! The L factor in the incomplete factorization.
! lia1 - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! according to the CSR storage format.
! lia2 - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor in laspk, according to the CSR storage format.
! uval - real(psb_spk_), dimension(:), input/output.
! The U factor in the incomplete factorization.
! The entries of U are stored according to the CSR format.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor,
! according to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor in uval, according to the CSR storage format.
! l1 - integer, output
! The number of nonzero entries in laspk.
! l2 - integer, output
! The number of nonzero entries in uval.
! info - integer, output.
! Error code.
!
subroutine mld_siluk_factint(fill_in,ialg,a,b,&
& d,lval,lja,lirp,uval,uja,uirp,l1,l2,info)
use psb_base_mod
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg
type(psb_sspmat_type),intent(in) :: a,b
integer(psb_ipk_),intent(inout) :: l1,l2,info
integer(psb_ipk_), allocatable, intent(inout) :: lja(:),lirp(:),uja(:),uirp(:)
real(psb_spk_), allocatable, intent(inout) :: lval(:),uval(:)
real(psb_spk_), intent(inout) :: d(:)
! Local variables
integer(psb_ipk_) :: ma,mb,i, ktrw,err_act,nidx, m
integer(psb_ipk_), allocatable :: uplevs(:), rowlevs(:),idxs(:)
real(psb_spk_), allocatable :: row(:)
type(psb_i_heap) :: heap
type(psb_s_coo_sparse_mat) :: trw
character(len=20), parameter :: name='mld_siluk_factint'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
select case(ialg)
case(mld_ilu_n_,mld_milu_n_)
! Ok
case default
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name,&
& i_err=(/itwo,ialg,izero,izero,izero/))
goto 9999
end select
if (fill_in < 0) then
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name, &
& i_err=(/ione,fill_in,izero,izero,izero/))
goto 9999
end if
ma = a%get_nrows()
mb = b%get_nrows()
m = ma+mb
!
! Allocate a temporary buffer for the iluk_copyin function
!
call trw%allocate(izero,izero,ione)
if (info == psb_success_) call psb_ensure_size(m+1,lirp,info)
if (info == psb_success_) call psb_ensure_size(m+1,uirp,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='psb_sp_all')
goto 9999
end if
l1=0
l2=0
lirp(1) = 1
uirp(1) = 1
!
! Allocate memory to hold the entries of a row and the corresponding
! fill levels
!
allocate(uplevs(size(uval)),rowlevs(m),row(m),stat=info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
uplevs(:) = m+1
row(:) = szero
rowlevs(:) = -(m+1)
!
! Cycle over the matrix rows
!
do i = 1, m
!
! At each iteration of the loop we keep in a heap the column indices
! affected by the factorization. The heap is initialized and filled
! in the iluk_copyin routine, and updated during the elimination, in
! the iluk_fact routine. The heap is ideal because at each step we need
! the lowest index, but we also need to insert new items, and the heap
! allows to do both in log time.
!
d(i) = szero
if (i<=ma) then
!
! Copy into trw the i-th local row of the matrix, stored in a
!
call iluk_copyin(i,ma,a,ione,m,row,rowlevs,heap,ktrw,trw,info)
else
!
! Copy into trw the i-th local row of the matrix, stored in b
! (as (i-ma)-th row)
!
call iluk_copyin(i-ma,mb,b,ione,m,row,rowlevs,heap,ktrw,trw,info)
endif
! Do an elimination step on the current row. It turns out we only
! need to keep track of fill levels for the upper triangle, hence we
! do not have a lowlevs variable.
!
if (info == psb_success_) call iluk_fact(fill_in,i,row,rowlevs,heap,&
& d,uja,uirp,uval,uplevs,nidx,idxs,info)
!
! Copy the row into lval/d(i)/uval
!
if (info == psb_success_) call iluk_copyout(fill_in,ialg,i,m,row,rowlevs,nidx,idxs,&
& l1,l2,lja,lirp,lval,d,uja,uirp,uval,uplevs,info)
if (info /= psb_success_) then
info=psb_err_internal_error_
call psb_errpush(info,name,a_err='Copy/factor loop')
goto 9999
end if
end do
!
! And we're done, so deallocate the memory
!
deallocate(uplevs,rowlevs,row,stat=info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Deallocate')
goto 9999
end if
if (info == psb_success_) call trw%free()
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_siluk_factint
!
! Subroutine: iluk_copyin
! Version: real
! Note: internal subroutine of mld_siluk_fact
!
! This routine copies a row of a sparse matrix A, stored in the sparse matrix
! structure a, into the array row and stores into a heap the column indices of
! the nonzero entries of the copied row. The output array row is such that it
! contains a full row of A, i.e. it contains also the zero entries of the row.
! This is useful for the elimination step performed by iluk_fact after the call
! to iluk_copyin (see mld_iluk_factint).
! The routine also sets to zero the entries of the array rowlevs corresponding
! to the nonzero entries of the copied row (see the description of the arguments
! below).
!
! If the sparse matrix is in CSR format, a 'straight' copy is performed;
! otherwise psb_sp_getblk is used to extract a block of rows, which is then
! copied, row by row, into the array row, through successive calls to
! ilu_copyin.
!
! This routine is used by mld_siluk_factint in the computation of the
! ILU(k)/MILU(k) factorization of a local sparse matrix.
!
!
! Arguments:
! i - integer, input.
! The local index of the row to be extracted from the
! sparse matrix structure a.
! m - integer, input.
! The number of rows of the local matrix stored into a.
! a - type(psb_sspmat_type), input.
! The sparse matrix structure containing the row to be copied.
! jmin - integer, input.
! The minimum valid column index.
! jmax - integer, input.
! The maximum valid column index.
! The output matrix will contain a clipped copy taken from
! a(1:m,jmin:jmax).
! row - real(psb_spk_), dimension(:), input/output.
! In input it is the null vector (see mld_iluk_factint and
! iluk_copyout). In output it contains the row extracted
! from the matrix A. It actually contains a full row, i.e.
! it contains also the zero entries of the row.
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) = -(m+1) for k=1,...,m. In output
! rowlevs(k) = 0 for 1 <= k <= jmax and A(i,k) /= 0, for
! future use in iluk_fact.
! heap - type(psb_i_heap), input/output.
! The heap containing the column indices of the nonzero
! entries in the array row.
! Note: this argument is intent(inout) and not only intent(out)
! to retain its allocation, done by psb_init_heap inside this
! routine.
! ktrw - integer, input/output.
! The index identifying the last entry taken from the
! staging buffer trw. See below.
! trw - type(psb_sspmat_type), input/output.
! A staging buffer. If the matrix A is not in CSR format, we use
! the psb_sp_getblk routine and store its output in trw; when we
! need to call psb_sp_getblk we do it for a block of rows, and then
! we consume them from trw in successive calls to this routine,
! until we empty the buffer. Thus we will make a call to psb_sp_getblk
! every nrb calls to copyin. If A is in CSR format it is unused.
!
subroutine iluk_copyin(i,m,a,jmin,jmax,row,rowlevs,heap,ktrw,trw,info)
use psb_base_mod
implicit none
! Arguments
type(psb_sspmat_type), intent(in) :: a
type(psb_s_coo_sparse_mat), intent(inout) :: trw
integer(psb_ipk_), intent(in) :: i,m,jmin,jmax
integer(psb_ipk_), intent(inout) :: ktrw,info
integer(psb_ipk_), intent(inout) :: rowlevs(:)
real(psb_spk_), intent(inout) :: row(:)
type(psb_i_heap), intent(inout) :: heap
! Local variables
integer(psb_ipk_) :: k,j,irb,err_act,nz
integer(psb_ipk_), parameter :: nrb=40
character(len=20), parameter :: name='iluk_copyin'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
call heap%init(info)
select type (aa=> a%a)
type is (psb_s_csr_sparse_mat)
!
! Take a fast shortcut if the matrix is stored in CSR format
!
do j = aa%irp(i), aa%irp(i+1) - 1
k = aa%ja(j)
if ((jmin<=k).and.(k<=jmax)) then
row(k) = aa%val(j)
rowlevs(k) = 0
call heap%insert(k,info)
end if
end do
class default
!
! Otherwise use psb_sp_getblk, slower but able (in principle) of
! handling any format. In this case, a block of rows is extracted
! instead of a single row, for performance reasons, and these
! rows are copied one by one into the array row, through successive
! calls to iluk_copyin.
!
if ((mod(i,nrb) == 1).or.(nrb == 1)) then
irb = min(m-i+1,nrb)
call aa%csget(i,i+irb-1,trw,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_getblk'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
ktrw=1
end if
nz = trw%get_nzeros()
do
if (ktrw > nz) exit
if (trw%ia(ktrw) > i) exit
k = trw%ja(ktrw)
if ((jmin<=k).and.(k<=jmax)) then
row(k) = trw%val(ktrw)
rowlevs(k) = 0
call heap%insert(k,info)
end if
ktrw = ktrw + 1
enddo
end select
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine iluk_copyin
!
! Subroutine: iluk_fact
! Version: real
! Note: internal subroutine of mld_siluk_fact
!
! This routine does an elimination step of the ILU(k) factorization on a
! single matrix row (see the calling routine mld_iluk_factint).
!
! This step is also the base for a MILU(k) elimination step on the row (see
! iluk_copyout). This routine is used by mld_siluk_factint in the computation
! of the ILU(k)/MILU(k) factorization of a local sparse matrix.
!
! NOTE: it turns out we only need to keep track of the fill levels for
! the upper triangle.
!
!
! Arguments
! fill_in - integer, input.
! The fill-in level k in ILU(k).
! i - integer, input.
! The local index of the row to which the factorization is
! applied.
! row - real(psb_spk_), dimension(:), input/output.
! In input it contains the row to which the elimination step
! has to be applied. In output it contains the row after the
! elimination step. It actually contains a full row, i.e.
! it contains also the zero entries of the row.
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) = 0 if the k-th entry of the row is
! nonzero, and rowlevs(k) = -(m+1) otherwise. In output
! rowlevs(k) contains the fill kevel of the k-th entry of
! the row after the current elimination step; rowlevs(k) = -(m+1)
! means that the k-th row entry is zero throughout the elimination
! step.
! heap - type(psb_i_heap), input/output.
! The heap containing the column indices of the nonzero entries
! in the processed row. In input it contains the indices concerning
! the row before the elimination step, while in output it contains
! the indices concerning the transformed row.
! d - real(psb_spk_), input.
! The inverse of the diagonal entries of the part of the U factor
! above the current row (see iluk_copyout).
! uja - integer, dimension(:), input.
! The column indices of the nonzero entries of the part of the U
! factor above the current row, stored in uval row by row (see
! iluk_copyout, called by mld_siluk_factint), according to the CSR
! storage format.
! uirp - integer, dimension(:), input.
! The indices identifying the first nonzero entry of each row of
! the U factor above the current row, stored in uval row by row
! (see iluk_copyout, called by mld_siluk_factint), according to
! the CSR storage format.
! uval - real(psb_spk_), dimension(:), input.
! The entries of the U factor above the current row (except the
! diagonal ones), stored according to the CSR format.
! uplevs - integer, dimension(:), input.
! The fill levels of the nonzero entries in the part of the
! U factor above the current row.
! nidx - integer, output.
! The number of entries of the array row that have been
! examined during the elimination step. This will be used
! by the routine iluk_copyout.
! idxs - integer, dimension(:), allocatable, input/output.
! The indices of the entries of the array row that have been
! examined during the elimination step.This will be used by
! by the routine iluk_copyout.
! Note: this argument is intent(inout) and not only intent(out)
! to retain its allocation, done by this routine.
!
subroutine iluk_fact(fill_in,i,row,rowlevs,heap,d,uja,uirp,uval,uplevs,nidx,idxs,info)
use psb_base_mod
implicit none
! Arguments
type(psb_i_heap), intent(inout) :: heap
integer(psb_ipk_), intent(in) :: i, fill_in
integer(psb_ipk_), intent(inout) :: nidx,info
integer(psb_ipk_), intent(inout) :: rowlevs(:)
integer(psb_ipk_), allocatable, intent(inout) :: idxs(:)
integer(psb_ipk_), intent(inout) :: uja(:),uirp(:),uplevs(:)
real(psb_spk_), intent(inout) :: row(:), uval(:),d(:)
! Local variables
integer(psb_ipk_) :: k,j,lrwk,jj,lastk, iret
real(psb_spk_) :: rwk
info = psb_success_
if (.not.allocated(idxs)) then
allocate(idxs(200),stat=info)
if (info /= psb_success_) return
endif
nidx = 0
lastk = -1
!
! Do while there are indices to be processed
!
do
! Beware: (iret < 0) means that the heap is empty, not an error.
call heap%get_first(k,iret)
if (iret < 0) return
!
! Just in case an index has been put on the heap more than once.
!
if (k == lastk) cycle
lastk = k
nidx = nidx + 1
if (nidx>size(idxs)) then
call psb_realloc(nidx+psb_heap_resize,idxs,info)
if (info /= psb_success_) return
end if
idxs(nidx) = k
if ((row(k) /= szero).and.(rowlevs(k) <= fill_in).and.(k<i)) then
!
! Note: since U is scaled while copying it out (see iluk_copyout),
! we can use rwk in the update below
!
rwk = row(k)
row(k) = row(k) * d(k) ! d(k) == 1/a(k,k)
lrwk = rowlevs(k)
do jj=uirp(k),uirp(k+1)-1
j = uja(jj)
if (j<=k) then
info = -i
return
endif
!
! Insert the index into the heap for further processing.
! The fill levels are initialized to a negative value. If we find
! one, it means that it is an as yet untouched index, so we need
! to insert it; otherwise it is already on the heap, there is no
! need to insert it more than once.
!
if (rowlevs(j)<0) then
call heap%insert(j,info)
if (info /= psb_success_) return
rowlevs(j) = abs(rowlevs(j))
end if
!
! Update row(j) and the corresponding fill level
!
row(j) = row(j) - rwk * uval(jj)
rowlevs(j) = min(rowlevs(j),lrwk+uplevs(jj)+1)
end do
end if
end do
end subroutine iluk_fact
!
! Subroutine: iluk_copyout
! Version: real
! Note: internal subroutine of mld_siluk_fact
!
! This routine copies a matrix row, computed by iluk_fact by applying an
! elimination step of the ILU(k) factorization, into the arrays lval, uval,
! d, corresponding to the L factor, the U factor and the diagonal of U,
! respectively.
!
! Note that
! - the part of the row stored into uval is scaled by the corresponding diagonal
! entry, according to the LDU form of the incomplete factorization;
! - the inverse of the diagonal entries of U is actually stored into d; this is
! then managed in the solve stage associated to the ILU(k)/MILU(k) factorization;
! - if the MILU(k) factorization has been required (ialg == mld_milu_n_), the
! row entries discarded because their fill levels are too high are added to
! the diagonal entry of the row;
! - the row entries are stored in lval and uval according to the CSR format;
! - the arrays row and rowlevs are re-initialized for future use in mld_iluk_fact
! (see also iluk_copyin and iluk_fact).
!
! This routine is used by mld_siluk_factint in the computation of the
! ILU(k)/MILU(k) factorization of a local sparse matrix.
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization considered. The MILU(k)
! factorization is computed if ialg = 2 (= mld_milu_n_); the
! ILU(k) factorization otherwise.
! i - integer, input.
! The local index of the row to be copied.
! m - integer, input.
! The number of rows of the local matrix under factorization.
! row - real(psb_spk_), dimension(:), input/output.
! It contains, input, the row to be copied, and, in output,
! the null vector (the latter is used in the next call to
! iluk_copyin in mld_iluk_fact).
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) contains the fill kevel of the k-th entry
! of the row to be copied. rowlevs(k) = -(m+1) indicates that
! this entry is zero; however, any rowlevs(k) = -(m+1) is not
! used by the routine. In output rowlevs(k) = -(m+1) for all k's
! (this is an inizialization for the next call to iluk_copyin
! in mld_iluk_factint).
! nidx - integer, input.
! The number of entries of the array row that have been examined
! during the elimination step carried out by the routine iluk_fact.
! idxs - integer, dimension(:), allocatable, input.
! The indices of the entries of the array row that have been
! examined during the elimination step carried out by the routine
! iluk_fact.
! l1 - integer, input/output.
! Pointer to the last occupied entry of lval.
! l2 - integer, input/output.
! Pointer to the last occupied entry of uval.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! copied in lval row by row (see mld_siluk_factint), according
! to the CSR storage format.
! lirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor, copied in lval row by row (see
! mld_siluk_factint), according to the CSR storage format.
! lval - real(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! L factor are copied.
! d - real(psb_spk_), dimension(:), input/output.
! The array where the inverse of the diagonal entry of the
! row is copied (only d(i) is used by the routine).
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor
! copied in uval row by row (see mld_siluk_factint), according
! to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor copied in uval row by row (see
! mld_zilu_fctint), according to the CSR storage format.
! uval - real(psb_spk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! U factor are copied.
! uplevs - integer, dimension(:), input.
! The fill levels of the nonzero entries in the part of the
! U factor above the current row.
!
subroutine iluk_copyout(fill_in,ialg,i,m,row,rowlevs,nidx,idxs,&
& l1,l2,lja,lirp,lval,d,uja,uirp,uval,uplevs,info)
use psb_base_mod
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg, i, m, nidx
integer(psb_ipk_), intent(inout) :: l1, l2, info
integer(psb_ipk_), intent(inout) :: rowlevs(:), idxs(:)
integer(psb_ipk_), allocatable, intent(inout) :: uja(:), uirp(:), lja(:), lirp(:),uplevs(:)
real(psb_spk_), allocatable, intent(inout) :: uval(:), lval(:)
real(psb_spk_), intent(inout) :: row(:), d(:)
! Local variables
integer(psb_ipk_) :: j,isz,err_act,int_err(5),idxp
character(len=20), parameter :: name='mld_siluk_factint'
character(len=20) :: ch_err
info = psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
d(i) = szero
do idxp=1,nidx
j = idxs(idxp)
if (j<i) then
!
! Copy the lower part of the row
!
if (rowlevs(j) <= fill_in) then
l1 = l1 + 1
if (size(lval) < l1) then
!
! Figure out a good reallocation size!
!
isz = (max((l1/i)*m,int(1.2*l1),l1+100))
call psb_realloc(isz,lval,info)
if (info == psb_success_) call psb_realloc(isz,lja,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
end if
lja(l1) = j
lval(l1) = row(j)
else if (ialg == mld_milu_n_) then
!
! MILU(k): add discarded entries to the diagonal one
!
d(i) = d(i) + row(j)
end if
!
! Re-initialize row(j) and rowlevs(j)
!
row(j) = szero
rowlevs(j) = -(m+1)
else if (j == i) then
!
! Copy the diagonal entry of the row and re-initialize
! row(j) and rowlevs(j)
!
d(i) = d(i) + row(i)
row(i) = szero
rowlevs(i) = -(m+1)
else if (j>i) then
!
! Copy the upper part of the row
!
if (rowlevs(j) <= fill_in) then
l2 = l2 + 1
if (size(uval) < l2) then
!
! Figure out a good reallocation size!
!
isz = max((l2/i)*m,int(1.2*l2),l2+100)
call psb_realloc(isz,uval,info)
if (info == psb_success_) call psb_realloc(isz,uja,info)
if (info == psb_success_) call psb_realloc(isz,uplevs,info,pad=(m+1))
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
end if
uja(l2) = j
uval(l2) = row(j)
uplevs(l2) = rowlevs(j)
else if (ialg == mld_milu_n_) then
!
! MILU(k): add discarded entries to the diagonal one
!
d(i) = d(i) + row(j)
end if
!
! Re-initialize row(j) and rowlevs(j)
!
row(j) = szero
rowlevs(j) = -(m+1)
end if
end do
!
! Store the pointers to the first non occupied entry of in
! lval and uval
!
lirp(i+1) = l1 + 1
uirp(i+1) = l2 + 1
!
! Check the pivot size
!
if (abs(d(i)) < s_epstol) then
!
! Too small pivot: unstable factorization
!
info = psb_err_pivot_too_small_
int_err(1) = i
write(ch_err,'(g20.10)') d(i)
call psb_errpush(info,name,i_err=int_err,a_err=ch_err)
goto 9999
else
!
! Compute 1/pivot
!
d(i) = sone/d(i)
end if
!
! Scale the upper part
!
do j=uirp(i), uirp(i+1)-1
uval(j) = d(i)*uval(j)
end do
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine iluk_copyout
end subroutine mld_siluk_fact

File diff suppressed because it is too large Load Diff

@ -99,7 +99,7 @@ subroutine mld_z_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
select case(sv%fact_type) select case(sv%fact_type)
case (mld_ilu_t_) case (psb_ilu_t_)
! !
! ILU(k,t) ! ILU(k,t)
! !
@ -113,17 +113,17 @@ subroutine mld_z_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
case(0:) case(0:)
! Fill-in >= 0 ! Fill-in >= 0
call mld_ilut_fact(sv%fill_in,sv%thresh,& call psb_ilut_fact(sv%fill_in,sv%thresh,&
& a, sv%l,sv%u,sv%d,info,blck=b) & a, sv%l,sv%u,sv%d,info,blck=b)
end select end select
if(info /= psb_success_) then if(info /= psb_success_) then
info=psb_err_from_subroutine_ info=psb_err_from_subroutine_
ch_err='mld_ilut_fact' ch_err='psb_ilut_fact'
call psb_errpush(info,name,a_err=ch_err) call psb_errpush(info,name,a_err=ch_err)
goto 9999 goto 9999
end if end if
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
! !
! ILU(k) and MILU(k) ! ILU(k) and MILU(k)
! !
@ -137,24 +137,24 @@ subroutine mld_z_ilu_solver_bld(a,desc_a,sv,info,b,amold,vmold,imold)
! Fill-in 0 ! Fill-in 0
! Separate implementation of ILU(0) for better performance. ! Separate implementation of ILU(0) for better performance.
! There seems to be a problem with the separate implementation of MILU(0), ! There seems to be a problem with the separate implementation of MILU(0),
! contained into mld_ilu0_fact. This must be investigated. For the time being, ! contained into psb_ilu0_fact. This must be investigated. For the time being,
! resort to the implementation of MILU(k) with k=0. ! resort to the implementation of MILU(k) with k=0.
if (sv%fact_type == mld_ilu_n_) then if (sv%fact_type == psb_ilu_n_) then
call mld_ilu0_fact(sv%fact_type,a,sv%l,sv%u,& call psb_ilu0_fact(sv%fact_type,a,sv%l,sv%u,&
& sv%d,info,blck=b) & sv%d,info,blck=b)
else else
call mld_iluk_fact(sv%fill_in,sv%fact_type,& call psb_iluk_fact(sv%fill_in,sv%fact_type,&
& a,sv%l,sv%u,sv%d,info,blck=b) & a,sv%l,sv%u,sv%d,info,blck=b)
endif endif
case(1:) case(1:)
! Fill-in >= 1 ! Fill-in >= 1
! The same routine implements both ILU(k) and MILU(k) ! The same routine implements both ILU(k) and MILU(k)
call mld_iluk_fact(sv%fill_in,sv%fact_type,& call psb_iluk_fact(sv%fill_in,sv%fact_type,&
& a,sv%l,sv%u,sv%d,info,blck=b) & a,sv%l,sv%u,sv%d,info,blck=b)
end select end select
if (info /= psb_success_) then if (info /= psb_success_) then
info=psb_err_from_subroutine_ info=psb_err_from_subroutine_
ch_err='mld_iluk_fact' ch_err='psb_iluk_fact'
call psb_errpush(info,name,a_err=ch_err) call psb_errpush(info,name,a_err=ch_err)
goto 9999 goto 9999
end if end if

@ -1,666 +0,0 @@
!
!
! MLD2P4 version 2.2
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008-2018
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: mld_zilu0_fact.f90
!
! Subroutine: mld_zilu0_fact
! Version: complex
! Contains: mld_zilu0_factint, ilu_copyin
!
! This routine computes either the ILU(0) or the MILU(0) factorization of
! the diagonal blocks of a distributed matrix. These factorizations are used
! to build the 'base preconditioner' (block-Jacobi preconditioner/solver,
! Additive Schwarz preconditioner) corresponding to a given level of a
! multilevel preconditioner.
!
! Details on the above factorizations can be found in
! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
! SIAM, 2003, Chapter 10.
!
! The local matrix is stored into a and blck, as specified in the description
! of the arguments below. The storage format for both the L and U factors is CSR.
! The diagonal of the U factor is stored separately (actually, the inverse of the
! diagonal entries is stored; this is then managed in the solve stage associated
! to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from a and blck into l (L factor),
! u (U factor, except its diagonal) and d (diagonal of U).
!
! This implementation of ILU(0)/MILU(0) is faster than the implementation in
! mld_ziluk_fct (the latter routine performs the more general ILU(k)/MILU(k)).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The MILU(0) factorization is computed if ialg = 2 (= mld_milu_n_);
! the ILU(0) factorization otherwise.
! a - type(psb_zspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_as_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! l - type(psb_zspmat_type), input/output.
! The L factor in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! u - type(psb_zspmat_type), input/output.
! The U factor (except its diagonal) in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! d - complex(psb_dpk_), dimension(:), input/output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! info - integer, output.
! Error code.
! blck - type(psb_zspmat_type), input, optional, target.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then blck is empty.
!
subroutine mld_zilu0_fact(ialg,a,l,u,d,info,blck, upd)
use psb_base_mod
use mld_z_ilu_fact_mod, mld_protect_name => mld_zilu0_fact
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_zspmat_type),intent(in) :: a
type(psb_zspmat_type),intent(inout) :: l,u
complex(psb_dpk_), intent(inout) :: d(:)
integer(psb_ipk_), intent(out) :: info
type(psb_zspmat_type),intent(in), optional, target :: blck
character, intent(in), optional :: upd
! Local variables
integer(psb_ipk_) :: l1, l2, m, err_act
type(psb_zspmat_type), pointer :: blck_
type(psb_z_csr_sparse_mat) :: ll, uu
character :: upd_
character(len=20) :: name, ch_err
name='mld_zilu0_fact'
info = psb_success_
call psb_erractionsave(err_act)
!
! Point to / allocate memory for the incomplete factorization
!
if (present(blck)) then
blck_ => blck
else
allocate(blck_,stat=info)
if (info == psb_success_) call blck_%csall(izero,izero,info,ione)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csall'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
if (present(upd)) then
upd_ = psb_toupper(upd)
else
upd_ = 'F'
end if
m = a%get_nrows() + blck_%get_nrows()
if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.&
& (m > size(d)) ) then
write(0,*) 'Wrong allocation status for L,D,U? ',&
& l%get_nrows(),size(d),u%get_nrows()
info = -1
return
end if
call l%mv_to(ll)
call u%mv_to(uu)
!
! Compute the ILU(0) or the MILU(0) factorization, depending on ialg
!
call mld_zilu0_factint(ialg,a,blck_,&
& d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,upd_,info)
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='mld_zilu0_factint'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Store information on the L and U sparse matrices
!
call l%mv_from(ll)
call l%set_triangle()
call l%set_unit()
call l%set_lower()
call u%mv_from(uu)
call u%set_triangle()
call u%set_unit()
call u%set_upper()
!
! Nullify pointer / deallocate memory
!
if (present(blck)) then
blck_ => null()
else
call blck_%free()
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(blck_)
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
!
! Subroutine: mld_zilu0_factint
! Version: complex
! Note: internal subroutine of mld_zilu0_fact.
!
! This routine computes either the ILU(0) or the MILU(0) factorization of the
! diagonal blocks of a distributed matrix.
! These factorizations are used to build the 'base preconditioner'
! (block-Jacobi preconditioner/solver, Additive Schwarz
! preconditioner) corresponding to a given level of a multilevel preconditioner.
!
! The local matrix is stored into a and b, as specified in the
! description of the arguments below. The storage format for both the L and U
! factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the
! solve stage associated to the ILU(0)/MILU(0) factorization).
!
! The routine copies and factors "on the fly" from the sparse matrix structures a
! and b into the arrays lval, uval, d (L, U without its diagonal, diagonal of U).
!
!
! Arguments:
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The ILU(0) factorization is computed if ialg = 1 (= mld_ilu_n_),
! the MILU(0) one if ialg = 2 (= mld_milu_n_); other values
! are not allowed.
! m - integer, output.
! The total number of rows of the local matrix to be factorized,
! i.e. ma+mb.
! ma - integer, input
! The number of rows of the local submatrix stored into a.
! a - type(psb_zspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that, if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! mb - integer, input.
! The number of rows of the local submatrix stored into b.
! b - type(psb_zspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been
! reordered (see mld_fact_bld), then b does not contain any row.
! d - complex(psb_dpk_), dimension(:), output.
! The inverse of the diagonal entries of the U factor in the
! incomplete factorization.
! lval - complex(psb_dpk_), dimension(:), input/output.
! The entries of U are stored according to the CSR format.
! The L factor in the incomplete factorization.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! according to the CSR storage format.
! lirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor in lval, according to the CSR storage format.
! uval - complex(psb_dpk_), dimension(:), input/output.
! The U factor in the incomplete factorization.
! The entries of U are stored according to the CSR format.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor,
! according to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor in uval, according to the CSR storage format.
! l1 - integer, output.
! The number of nonzero entries in lval.
! l2 - integer, output.
! The number of nonzero entries in uval.
! info - integer, output.
! Error code.
!
subroutine mld_zilu0_factint(ialg,a,b,&
& d,lval,lja,lirp,uval,uja,uirp,l1,l2,upd,info)
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: ialg
type(psb_zspmat_type),intent(in) :: a,b
integer(psb_ipk_),intent(inout) :: l1,l2,info
integer(psb_ipk_), intent(inout) :: lja(:),lirp(:),uja(:),uirp(:)
complex(psb_dpk_), intent(inout) :: lval(:),uval(:),d(:)
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: i,j,k,l,low1,low2,kk,jj,ll, ktrw,err_act, m
integer(psb_ipk_) :: ma,mb
complex(psb_dpk_) :: dia,temp
integer(psb_ipk_), parameter :: nrb=16
type(psb_z_coo_sparse_mat) :: trw
integer(psb_ipk_) :: int_err(5)
character(len=20) :: name, ch_err
name='mld_zilu0_factint'
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
ma = a%get_nrows()
mb = b%get_nrows()
select case(ialg)
case(mld_ilu_n_,mld_milu_n_)
! Ok
case default
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name,&
& i_err=(/ione,ialg,izero,izero,izero/))
goto 9999
end select
call trw%allocate(izero,izero,ione)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_all'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
m = ma+mb
if (psb_toupper(upd) == 'F' ) then
lirp(1) = 1
uirp(1) = 1
l1 = 0
l2 = 0
!
! Cycle over the matrix rows
!
do i = 1, m
d(i) = zzero
if (i <= ma) then
!
! Copy the i-th local row of the matrix, stored in a,
! into lval/d(i)/uval
!
call ilu_copyin(i,ma,a,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
else
!
! Copy the i-th local row of the matrix, stored in b
! (as (i-ma)-th row), into lval/d(i)/uval
!
call ilu_copyin(i-ma,mb,b,i,ione,m,l1,lja,lval,&
& d(i),l2,uja,uval,ktrw,trw,upd)
endif
lirp(i+1) = l1 + 1
uirp(i+1) = l2 + 1
dia = d(i)
do kk = lirp(i), lirp(i+1) - 1
!
! Compute entry l(i,k) (lower factor L) of the incomplete
! factorization
!
temp = lval(kk)
k = lja(kk)
lval(kk) = temp*d(k)
!
! Update the rest of row i (lower and upper factors L and U)
! using l(i,k)
!
low1 = kk + 1
low2 = uirp(i)
!
updateloop: do jj = uirp(k), uirp(k+1) - 1
!
j = uja(jj)
!
if (j < i) then
!
! search l(i,*) (i-th row of L) for a matching index j
!
do ll = low1, lirp(i+1) - 1
l = lja(ll)
if (l > j) then
low1 = ll
exit
else if (l == j) then
lval(ll) = lval(ll) - temp*uval(jj)
low1 = ll + 1
cycle updateloop
end if
enddo
else if (j == i) then
!
! j=i: update the diagonal
!
dia = dia - temp*uval(jj)
cycle updateloop
!
else if (j > i) then
!
! search u(i,*) (i-th row of U) for a matching index j
!
do ll = low2, uirp(i+1) - 1
l = uja(ll)
if (l > j) then
low2 = ll
exit
else if (l == j) then
uval(ll) = uval(ll) - temp*uval(jj)
low2 = ll + 1
cycle updateloop
end if
enddo
end if
!
! If we get here we missed the cycle updateloop, which means
! that this entry does not match; thus we accumulate on the
! diagonal for MILU(0).
!
if (ialg == mld_milu_n_) then
dia = dia - temp*uval(jj)
end if
enddo updateloop
enddo
!
! Check the pivot size
!
if (abs(dia) < d_epstol) then
!
! Too small pivot: unstable factorization
!
info = psb_err_pivot_too_small_
int_err(1) = i
write(ch_err,'(g20.10)') abs(dia)
call psb_errpush(info,name,i_err=int_err,a_err=ch_err)
goto 9999
else
!
! Compute 1/pivot
!
dia = zone/dia
end if
d(i) = dia
!
! Scale row i of upper triangle
!
do kk = uirp(i), uirp(i+1) - 1
uval(kk) = uval(kk)*dia
enddo
enddo
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call trw%free()
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_zilu0_factint
!
! Subroutine: ilu_copyin
! Version: complex
! Note: internal subroutine of mld_zilu0_fact
!
! This routine copies a row of a sparse matrix A, stored in the psb_zspmat_type
! data structure a, into the arrays lval and uval and into the scalar variable
! dia, corresponding to the lower and upper triangles of A and to the diagonal
! entry of the row, respectively. The entries in lval and uval are stored
! according to the CSR format; the corresponding column indices are stored in
! the arrays lja and uja.
!
! If the sparse matrix is in CSR format, a 'straight' copy is performed;
! otherwise psb_sp_getblk is used to extract a block of rows, which is then
! copied into lval, dia, uval row by row, through successive calls to
! ilu_copyin.
!
! The routine is used by mld_zilu0_factint in the computation of the ILU(0)/MILU(0)
! factorization of a local sparse matrix.
!
! TODO: modify the routine to allow copying into output L and U that are
! already filled with indices; this would allow computing an ILU(k) pattern,
! then use the ILU(0) internal for subsequent calls with the same pattern.
!
! Arguments:
! i - integer, input.
! The local index of the row to be extracted from the
! sparse matrix structure a.
! m - integer, input.
! The number of rows of the local matrix stored into a.
! a - type(psb_zspmat_type), input.
! The sparse matrix structure containing the row to be copied.
! jd - integer, input.
! The column index of the diagonal entry of the row to be
! copied.
! jmin - integer, input.
! Minimum valid column index.
! jmax - integer, input.
! Maximum valid column index.
! The output matrix will contain a clipped copy taken from
! a(1:m,jmin:jmax).
! l1 - integer, input/output.
! Pointer to the last occupied entry of lval.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the lower triangle
! copied in lval row by row (see mld_zilu0_factint), according
! to the CSR storage format.
! lval - complex(psb_dpk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! lower triangle are copied.
! dia - complex(psb_dpk_), output.
! The diagonal entry of the copied row.
! l2 - integer, input/output.
! Pointer to the last occupied entry of uval.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the upper triangle
! copied in uval row by row (see mld_zilu0_factint), according
! to the CSR storage format.
! uval - complex(psb_dpk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! upper triangle are copied.
! ktrw - integer, input/output.
! The index identifying the last entry taken from the
! staging buffer trw. See below.
! trw - type(psb_zspmat_type), input/output.
! A staging buffer. If the matrix A is not in CSR format, we use
! the psb_sp_getblk routine and store its output in trw; when we
! need to call psb_sp_getblk we do it for a block of rows, and then
! we consume them from trw in successive calls to this routine,
! until we empty the buffer. Thus we will make a call to psb_sp_getblk
! every nrb calls to copyin. If A is in CSR format it is unused.
!
subroutine ilu_copyin(i,m,a,jd,jmin,jmax,l1,lja,lval,&
& dia,l2,uja,uval,ktrw,trw,upd)
use psb_base_mod
implicit none
! Arguments
type(psb_zspmat_type), intent(in) :: a
type(psb_z_coo_sparse_mat), intent(inout) :: trw
integer(psb_ipk_), intent(in) :: i,m,jd,jmin,jmax
integer(psb_ipk_), intent(inout) :: ktrw,l1,l2
integer(psb_ipk_), intent(inout) :: lja(:), uja(:)
complex(psb_dpk_), intent(inout) :: lval(:), uval(:), dia
character, intent(in) :: upd
! Local variables
integer(psb_ipk_) :: k,j,info,irb, nz
integer(psb_ipk_), parameter :: nrb=40
character(len=20), parameter :: name='ilu_copyin'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
if (psb_toupper(upd) == 'F') then
select type(aa => a%a)
type is (psb_z_csr_sparse_mat)
!
! Take a fast shortcut if the matrix is stored in CSR format
!
do j = aa%irp(i), aa%irp(i+1) - 1
k = aa%ja(j)
! write(0,*)'KKKKK',k
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = aa%val(j)
lja(l1) = k
else if (k == jd) then
dia = aa%val(j)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = aa%val(j)
uja(l2) = k
end if
enddo
class default
!
! Otherwise use psb_sp_getblk, slower but able (in principle) of
! handling any format. In this case, a block of rows is extracted
! instead of a single row, for performance reasons, and these
! rows are copied one by one into lval, dia, uval, through
! successive calls to ilu_copyin.
!
if ((mod(i,nrb) == 1).or.(nrb == 1)) then
irb = min(m-i+1,nrb)
call aa%csget(i,i+irb-1,trw,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csget'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
ktrw=1
end if
nz = trw%get_nzeros()
do
if (ktrw > nz) exit
if (trw%ia(ktrw) > i) exit
k = trw%ja(ktrw)
if ((k < jd).and.(k >= jmin)) then
l1 = l1 + 1
lval(l1) = trw%val(ktrw)
lja(l1) = k
else if (k == jd) then
dia = trw%val(ktrw)
else if ((k > jd).and.(k <= jmax)) then
l2 = l2 + 1
uval(l2) = trw%val(ktrw)
uja(l2) = k
end if
ktrw = ktrw + 1
enddo
end select
else
write(0,*) 'Update not implemented '
info = 31
call psb_errpush(info,name,&
& i_err=(/ione*13,izero,izero,izero,izero/),a_err=upd)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine ilu_copyin
end subroutine mld_zilu0_fact

@ -1,969 +0,0 @@
!
!
! MLD2P4 version 2.2
! MultiLevel Domain Decomposition Parallel Preconditioners Package
! based on PSBLAS (Parallel Sparse BLAS version 3.5)
!
! (C) Copyright 2008-2018
!
! Salvatore Filippone
! Pasqua D'Ambra
! Daniela di Serafino
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the MLD2P4 group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: mld_ziluk_fact.f90
!
! Subroutine: mld_ziluk_fact
! Version: complex
! Contains: mld_ziluk_factint, iluk_copyin, iluk_fact, iluk_copyout.
!
! This routine computes either the ILU(k) or the MILU(k) factorization of the
! diagonal blocks of a distributed matrix. These factorizations are used to
! build the 'base preconditioner' (block-Jacobi preconditioner/solver,
! Additive Schwarz preconditioner) corresponding to a certain level of a
! multilevel preconditioner.
!
! Details on the above factorizations can be found in
! Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
! SIAM, 2003, Chapter 10.
!
! The local matrix is stored into a and blck, as specified in
! the description of the arguments below. The storage format for both the L and
! U factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the solve
! stage associated to the ILU(k)/MILU(k) factorization).
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The ILU(k) factorization is computed if ialg = 1 (= mld_ilu_n_);
! the MILU(k) one if ialg = 2 (= mld_milu_n_); other values are
! not allowed.
! a - type(psb_zspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! l - type(psb_zspmat_type), input/output.
! The L factor in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! u - type(psb_zspmat_type), input/output.
! The U factor (except its diagonal) in the incomplete factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! d - complex(psb_dpk_), dimension(:), input/output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! Note: its allocation is managed by the calling routine mld_ilu_bld,
! hence it cannot be only intent(out).
! info - integer, output.
! Error code.
! blck - type(psb_zspmat_type), input, optional, target.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then blck does not contain any row.
!
subroutine mld_ziluk_fact(fill_in,ialg,a,l,u,d,info,blck)
use psb_base_mod
use mld_z_ilu_fact_mod, mld_protect_name => mld_ziluk_fact
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg
integer(psb_ipk_), intent(out) :: info
type(psb_zspmat_type),intent(in) :: a
type(psb_zspmat_type),intent(inout) :: l,u
type(psb_zspmat_type),intent(in), optional, target :: blck
complex(psb_dpk_), intent(inout) :: d(:)
! Local Variables
integer(psb_ipk_) :: l1, l2, m, err_act
type(psb_zspmat_type), pointer :: blck_
type(psb_z_csr_sparse_mat) :: ll, uu
character(len=20) :: name, ch_err
name='mld_ziluk_fact'
info = psb_success_
call psb_erractionsave(err_act)
!
! Point to / allocate memory for the incomplete factorization
!
if (present(blck)) then
blck_ => blck
else
allocate(blck_,stat=info)
if (info == psb_success_) call blck_%csall(izero,izero,info,ione)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='csall'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
m = a%get_nrows() + blck_%get_nrows()
if ((m /= l%get_nrows()).or.(m /= u%get_nrows()).or.&
& (m > size(d)) ) then
write(0,*) 'Wrong allocation status for L,D,U? ',&
& l%get_nrows(),size(d),u%get_nrows()
info = -1
return
end if
call l%mv_to(ll)
call u%mv_to(uu)
!
! Compute the ILU(k) or the MILU(k) factorization, depending on ialg
!
call mld_ziluk_factint(fill_in,ialg,a,blck_,&
& d,ll%val,ll%ja,ll%irp,uu%val,uu%ja,uu%irp,l1,l2,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='mld_ziluk_factint'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Store information on the L and U sparse matrices
!
call l%mv_from(ll)
call l%set_triangle()
call l%set_unit()
call l%set_lower()
call u%mv_from(uu)
call u%set_triangle()
call u%set_unit()
call u%set_upper()
!
! Nullify pointer / deallocate memory
!
if (present(blck)) then
blck_ => null()
else
call blck_%free()
deallocate(blck_,stat=info)
if(info.ne.0) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
endif
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
contains
!
! Subroutine: mld_ziluk_factint
! Version: complex
! Note: internal subroutine of mld_ziluk_fact
!
! This routine computes either the ILU(k) or the MILU(k) factorization of the
! diagonal blocks of a distributed matrix. These factorizations are used to build
! the 'base preconditioner' (block-Jacobi preconditioner/solver, Additive Schwarz
! preconditioner) corresponding to a certain level of a multilevel preconditioner.
!
! The local matrix is stored into a and b, as specified in the
! description of the arguments below. The storage format for both the L and U
! factors is CSR. The diagonal of the U factor is stored separately (actually,
! the inverse of the diagonal entries is stored; this is then managed in the
! solve stage associated to the ILU(k)/MILU(k) factorization).
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization to be performed.
! The MILU(k) factorization is computed if ialg = 2 (= mld_milu_n_);
! the ILU(k) factorization otherwise.
! m - integer, output.
! The total number of rows of the local matrix to be factorized,
! i.e. ma+mb.
! a - type(psb_zspmat_type), input.
! The sparse matrix structure containing the local matrix.
! Note that, if the 'base' Additive Schwarz preconditioner
! has overlap greater than 0 and the matrix has not been reordered
! (see mld_fact_bld), then a contains only the 'original' local part
! of the distributed matrix, i.e. the rows of the matrix held
! by the calling process according to the initial data distribution.
! b - type(psb_zspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! distributed matrix, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0. If the overlap is 0 or the matrix has been reordered
! (see mld_fact_bld), then b does not contain any row.
! d - complex(psb_dpk_), dimension(:), output.
! The inverse of the diagonal entries of the U factor in the incomplete
! factorization.
! laspk - complex(psb_dpk_), dimension(:), input/output.
! The L factor in the incomplete factorization.
! lia1 - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! according to the CSR storage format.
! lia2 - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor in laspk, according to the CSR storage format.
! uval - complex(psb_dpk_), dimension(:), input/output.
! The U factor in the incomplete factorization.
! The entries of U are stored according to the CSR format.
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor,
! according to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor in uval, according to the CSR storage format.
! l1 - integer, output
! The number of nonzero entries in laspk.
! l2 - integer, output
! The number of nonzero entries in uval.
! info - integer, output.
! Error code.
!
subroutine mld_ziluk_factint(fill_in,ialg,a,b,&
& d,lval,lja,lirp,uval,uja,uirp,l1,l2,info)
use psb_base_mod
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg
type(psb_zspmat_type),intent(in) :: a,b
integer(psb_ipk_),intent(inout) :: l1,l2,info
integer(psb_ipk_), allocatable, intent(inout) :: lja(:),lirp(:),uja(:),uirp(:)
complex(psb_dpk_), allocatable, intent(inout) :: lval(:),uval(:)
complex(psb_dpk_), intent(inout) :: d(:)
! Local variables
integer(psb_ipk_) :: ma,mb,i, ktrw,err_act,nidx, m
integer(psb_ipk_), allocatable :: uplevs(:), rowlevs(:),idxs(:)
complex(psb_dpk_), allocatable :: row(:)
type(psb_i_heap) :: heap
type(psb_z_coo_sparse_mat) :: trw
character(len=20), parameter :: name='mld_ziluk_factint'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
select case(ialg)
case(mld_ilu_n_,mld_milu_n_)
! Ok
case default
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name,&
& i_err=(/itwo,ialg,izero,izero,izero/))
goto 9999
end select
if (fill_in < 0) then
info=psb_err_input_asize_invalid_i_
call psb_errpush(info,name, &
& i_err=(/ione,fill_in,izero,izero,izero/))
goto 9999
end if
ma = a%get_nrows()
mb = b%get_nrows()
m = ma+mb
!
! Allocate a temporary buffer for the iluk_copyin function
!
call trw%allocate(izero,izero,ione)
if (info == psb_success_) call psb_ensure_size(m+1,lirp,info)
if (info == psb_success_) call psb_ensure_size(m+1,uirp,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='psb_sp_all')
goto 9999
end if
l1=0
l2=0
lirp(1) = 1
uirp(1) = 1
!
! Allocate memory to hold the entries of a row and the corresponding
! fill levels
!
allocate(uplevs(size(uval)),rowlevs(m),row(m),stat=info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
uplevs(:) = m+1
row(:) = zzero
rowlevs(:) = -(m+1)
!
! Cycle over the matrix rows
!
do i = 1, m
!
! At each iteration of the loop we keep in a heap the column indices
! affected by the factorization. The heap is initialized and filled
! in the iluk_copyin routine, and updated during the elimination, in
! the iluk_fact routine. The heap is ideal because at each step we need
! the lowest index, but we also need to insert new items, and the heap
! allows to do both in log time.
!
d(i) = zzero
if (i<=ma) then
!
! Copy into trw the i-th local row of the matrix, stored in a
!
call iluk_copyin(i,ma,a,ione,m,row,rowlevs,heap,ktrw,trw,info)
else
!
! Copy into trw the i-th local row of the matrix, stored in b
! (as (i-ma)-th row)
!
call iluk_copyin(i-ma,mb,b,ione,m,row,rowlevs,heap,ktrw,trw,info)
endif
! Do an elimination step on the current row. It turns out we only
! need to keep track of fill levels for the upper triangle, hence we
! do not have a lowlevs variable.
!
if (info == psb_success_) call iluk_fact(fill_in,i,row,rowlevs,heap,&
& d,uja,uirp,uval,uplevs,nidx,idxs,info)
!
! Copy the row into lval/d(i)/uval
!
if (info == psb_success_) call iluk_copyout(fill_in,ialg,i,m,row,rowlevs,nidx,idxs,&
& l1,l2,lja,lirp,lval,d,uja,uirp,uval,uplevs,info)
if (info /= psb_success_) then
info=psb_err_internal_error_
call psb_errpush(info,name,a_err='Copy/factor loop')
goto 9999
end if
end do
!
! And we're done, so deallocate the memory
!
deallocate(uplevs,rowlevs,row,stat=info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Deallocate')
goto 9999
end if
if (info == psb_success_) call trw%free()
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_free'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine mld_ziluk_factint
!
! Subroutine: iluk_copyin
! Version: complex
! Note: internal subroutine of mld_ziluk_fact
!
! This routine copies a row of a sparse matrix A, stored in the sparse matrix
! structure a, into the array row and stores into a heap the column indices of
! the nonzero entries of the copied row. The output array row is such that it
! contains a full row of A, i.e. it contains also the zero entries of the row.
! This is useful for the elimination step performed by iluk_fact after the call
! to iluk_copyin (see mld_iluk_factint).
! The routine also sets to zero the entries of the array rowlevs corresponding
! to the nonzero entries of the copied row (see the description of the arguments
! below).
!
! If the sparse matrix is in CSR format, a 'straight' copy is performed;
! otherwise psb_sp_getblk is used to extract a block of rows, which is then
! copied, row by row, into the array row, through successive calls to
! ilu_copyin.
!
! This routine is used by mld_ziluk_factint in the computation of the
! ILU(k)/MILU(k) factorization of a local sparse matrix.
!
!
! Arguments:
! i - integer, input.
! The local index of the row to be extracted from the
! sparse matrix structure a.
! m - integer, input.
! The number of rows of the local matrix stored into a.
! a - type(psb_zspmat_type), input.
! The sparse matrix structure containing the row to be copied.
! jmin - integer, input.
! The minimum valid column index.
! jmax - integer, input.
! The maximum valid column index.
! The output matrix will contain a clipped copy taken from
! a(1:m,jmin:jmax).
! row - complex(psb_dpk_), dimension(:), input/output.
! In input it is the null vector (see mld_iluk_factint and
! iluk_copyout). In output it contains the row extracted
! from the matrix A. It actually contains a full row, i.e.
! it contains also the zero entries of the row.
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) = -(m+1) for k=1,...,m. In output
! rowlevs(k) = 0 for 1 <= k <= jmax and A(i,k) /= 0, for
! future use in iluk_fact.
! heap - type(psb_i_heap), input/output.
! The heap containing the column indices of the nonzero
! entries in the array row.
! Note: this argument is intent(inout) and not only intent(out)
! to retain its allocation, done by psb_init_heap inside this
! routine.
! ktrw - integer, input/output.
! The index identifying the last entry taken from the
! staging buffer trw. See below.
! trw - type(psb_zspmat_type), input/output.
! A staging buffer. If the matrix A is not in CSR format, we use
! the psb_sp_getblk routine and store its output in trw; when we
! need to call psb_sp_getblk we do it for a block of rows, and then
! we consume them from trw in successive calls to this routine,
! until we empty the buffer. Thus we will make a call to psb_sp_getblk
! every nrb calls to copyin. If A is in CSR format it is unused.
!
subroutine iluk_copyin(i,m,a,jmin,jmax,row,rowlevs,heap,ktrw,trw,info)
use psb_base_mod
implicit none
! Arguments
type(psb_zspmat_type), intent(in) :: a
type(psb_z_coo_sparse_mat), intent(inout) :: trw
integer(psb_ipk_), intent(in) :: i,m,jmin,jmax
integer(psb_ipk_), intent(inout) :: ktrw,info
integer(psb_ipk_), intent(inout) :: rowlevs(:)
complex(psb_dpk_), intent(inout) :: row(:)
type(psb_i_heap), intent(inout) :: heap
! Local variables
integer(psb_ipk_) :: k,j,irb,err_act,nz
integer(psb_ipk_), parameter :: nrb=40
character(len=20), parameter :: name='iluk_copyin'
character(len=20) :: ch_err
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
call heap%init(info)
select type (aa=> a%a)
type is (psb_z_csr_sparse_mat)
!
! Take a fast shortcut if the matrix is stored in CSR format
!
do j = aa%irp(i), aa%irp(i+1) - 1
k = aa%ja(j)
if ((jmin<=k).and.(k<=jmax)) then
row(k) = aa%val(j)
rowlevs(k) = 0
call heap%insert(k,info)
end if
end do
class default
!
! Otherwise use psb_sp_getblk, slower but able (in principle) of
! handling any format. In this case, a block of rows is extracted
! instead of a single row, for performance reasons, and these
! rows are copied one by one into the array row, through successive
! calls to iluk_copyin.
!
if ((mod(i,nrb) == 1).or.(nrb == 1)) then
irb = min(m-i+1,nrb)
call aa%csget(i,i+irb-1,trw,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_sp_getblk'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
ktrw=1
end if
nz = trw%get_nzeros()
do
if (ktrw > nz) exit
if (trw%ia(ktrw) > i) exit
k = trw%ja(ktrw)
if ((jmin<=k).and.(k<=jmax)) then
row(k) = trw%val(ktrw)
rowlevs(k) = 0
call heap%insert(k,info)
end if
ktrw = ktrw + 1
enddo
end select
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine iluk_copyin
!
! Subroutine: iluk_fact
! Version: complex
! Note: internal subroutine of mld_ziluk_fact
!
! This routine does an elimination step of the ILU(k) factorization on a
! single matrix row (see the calling routine mld_iluk_factint).
!
! This step is also the base for a MILU(k) elimination step on the row (see
! iluk_copyout). This routine is used by mld_ziluk_factint in the computation
! of the ILU(k)/MILU(k) factorization of a local sparse matrix.
!
! NOTE: it turns out we only need to keep track of the fill levels for
! the upper triangle.
!
!
! Arguments
! fill_in - integer, input.
! The fill-in level k in ILU(k).
! i - integer, input.
! The local index of the row to which the factorization is
! applied.
! row - complex(psb_dpk_), dimension(:), input/output.
! In input it contains the row to which the elimination step
! has to be applied. In output it contains the row after the
! elimination step. It actually contains a full row, i.e.
! it contains also the zero entries of the row.
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) = 0 if the k-th entry of the row is
! nonzero, and rowlevs(k) = -(m+1) otherwise. In output
! rowlevs(k) contains the fill kevel of the k-th entry of
! the row after the current elimination step; rowlevs(k) = -(m+1)
! means that the k-th row entry is zero throughout the elimination
! step.
! heap - type(psb_i_heap), input/output.
! The heap containing the column indices of the nonzero entries
! in the processed row. In input it contains the indices concerning
! the row before the elimination step, while in output it contains
! the indices concerning the transformed row.
! d - complex(psb_dpk_), input.
! The inverse of the diagonal entries of the part of the U factor
! above the current row (see iluk_copyout).
! uja - integer, dimension(:), input.
! The column indices of the nonzero entries of the part of the U
! factor above the current row, stored in uval row by row (see
! iluk_copyout, called by mld_ziluk_factint), according to the CSR
! storage format.
! uirp - integer, dimension(:), input.
! The indices identifying the first nonzero entry of each row of
! the U factor above the current row, stored in uval row by row
! (see iluk_copyout, called by mld_ziluk_factint), according to
! the CSR storage format.
! uval - complex(psb_dpk_), dimension(:), input.
! The entries of the U factor above the current row (except the
! diagonal ones), stored according to the CSR format.
! uplevs - integer, dimension(:), input.
! The fill levels of the nonzero entries in the part of the
! U factor above the current row.
! nidx - integer, output.
! The number of entries of the array row that have been
! examined during the elimination step. This will be used
! by the routine iluk_copyout.
! idxs - integer, dimension(:), allocatable, input/output.
! The indices of the entries of the array row that have been
! examined during the elimination step.This will be used by
! by the routine iluk_copyout.
! Note: this argument is intent(inout) and not only intent(out)
! to retain its allocation, done by this routine.
!
subroutine iluk_fact(fill_in,i,row,rowlevs,heap,d,uja,uirp,uval,uplevs,nidx,idxs,info)
use psb_base_mod
implicit none
! Arguments
type(psb_i_heap), intent(inout) :: heap
integer(psb_ipk_), intent(in) :: i, fill_in
integer(psb_ipk_), intent(inout) :: nidx,info
integer(psb_ipk_), intent(inout) :: rowlevs(:)
integer(psb_ipk_), allocatable, intent(inout) :: idxs(:)
integer(psb_ipk_), intent(inout) :: uja(:),uirp(:),uplevs(:)
complex(psb_dpk_), intent(inout) :: row(:), uval(:),d(:)
! Local variables
integer(psb_ipk_) :: k,j,lrwk,jj,lastk, iret
complex(psb_dpk_) :: rwk
info = psb_success_
if (.not.allocated(idxs)) then
allocate(idxs(200),stat=info)
if (info /= psb_success_) return
endif
nidx = 0
lastk = -1
!
! Do while there are indices to be processed
!
do
! Beware: (iret < 0) means that the heap is empty, not an error.
call heap%get_first(k,iret)
if (iret < 0) return
!
! Just in case an index has been put on the heap more than once.
!
if (k == lastk) cycle
lastk = k
nidx = nidx + 1
if (nidx>size(idxs)) then
call psb_realloc(nidx+psb_heap_resize,idxs,info)
if (info /= psb_success_) return
end if
idxs(nidx) = k
if ((row(k) /= zzero).and.(rowlevs(k) <= fill_in).and.(k<i)) then
!
! Note: since U is scaled while copying it out (see iluk_copyout),
! we can use rwk in the update below
!
rwk = row(k)
row(k) = row(k) * d(k) ! d(k) == 1/a(k,k)
lrwk = rowlevs(k)
do jj=uirp(k),uirp(k+1)-1
j = uja(jj)
if (j<=k) then
info = -i
return
endif
!
! Insert the index into the heap for further processing.
! The fill levels are initialized to a negative value. If we find
! one, it means that it is an as yet untouched index, so we need
! to insert it; otherwise it is already on the heap, there is no
! need to insert it more than once.
!
if (rowlevs(j)<0) then
call heap%insert(j,info)
if (info /= psb_success_) return
rowlevs(j) = abs(rowlevs(j))
end if
!
! Update row(j) and the corresponding fill level
!
row(j) = row(j) - rwk * uval(jj)
rowlevs(j) = min(rowlevs(j),lrwk+uplevs(jj)+1)
end do
end if
end do
end subroutine iluk_fact
!
! Subroutine: iluk_copyout
! Version: complex
! Note: internal subroutine of mld_ziluk_fact
!
! This routine copies a matrix row, computed by iluk_fact by applying an
! elimination step of the ILU(k) factorization, into the arrays lval, uval,
! d, corresponding to the L factor, the U factor and the diagonal of U,
! respectively.
!
! Note that
! - the part of the row stored into uval is scaled by the corresponding diagonal
! entry, according to the LDU form of the incomplete factorization;
! - the inverse of the diagonal entries of U is actually stored into d; this is
! then managed in the solve stage associated to the ILU(k)/MILU(k) factorization;
! - if the MILU(k) factorization has been required (ialg == mld_milu_n_), the
! row entries discarded because their fill levels are too high are added to
! the diagonal entry of the row;
! - the row entries are stored in lval and uval according to the CSR format;
! - the arrays row and rowlevs are re-initialized for future use in mld_iluk_fact
! (see also iluk_copyin and iluk_fact).
!
! This routine is used by mld_ziluk_factint in the computation of the
! ILU(k)/MILU(k) factorization of a local sparse matrix.
!
!
! Arguments:
! fill_in - integer, input.
! The fill-in level k in ILU(k)/MILU(k).
! ialg - integer, input.
! The type of incomplete factorization considered. The MILU(k)
! factorization is computed if ialg = 2 (= mld_milu_n_); the
! ILU(k) factorization otherwise.
! i - integer, input.
! The local index of the row to be copied.
! m - integer, input.
! The number of rows of the local matrix under factorization.
! row - complex(psb_dpk_), dimension(:), input/output.
! It contains, input, the row to be copied, and, in output,
! the null vector (the latter is used in the next call to
! iluk_copyin in mld_iluk_fact).
! rowlevs - integer, dimension(:), input/output.
! In input rowlevs(k) contains the fill kevel of the k-th entry
! of the row to be copied. rowlevs(k) = -(m+1) indicates that
! this entry is zero; however, any rowlevs(k) = -(m+1) is not
! used by the routine. In output rowlevs(k) = -(m+1) for all k's
! (this is an inizialization for the next call to iluk_copyin
! in mld_iluk_factint).
! nidx - integer, input.
! The number of entries of the array row that have been examined
! during the elimination step carried out by the routine iluk_fact.
! idxs - integer, dimension(:), allocatable, input.
! The indices of the entries of the array row that have been
! examined during the elimination step carried out by the routine
! iluk_fact.
! l1 - integer, input/output.
! Pointer to the last occupied entry of lval.
! l2 - integer, input/output.
! Pointer to the last occupied entry of uval.
! lja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the L factor,
! copied in lval row by row (see mld_ziluk_factint), according
! to the CSR storage format.
! lirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the L factor, copied in lval row by row (see
! mld_ziluk_factint), according to the CSR storage format.
! lval - complex(psb_dpk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! L factor are copied.
! d - complex(psb_dpk_), dimension(:), input/output.
! The array where the inverse of the diagonal entry of the
! row is copied (only d(i) is used by the routine).
! uja - integer, dimension(:), input/output.
! The column indices of the nonzero entries of the U factor
! copied in uval row by row (see mld_ziluk_factint), according
! to the CSR storage format.
! uirp - integer, dimension(:), input/output.
! The indices identifying the first nonzero entry of each row
! of the U factor copied in uval row by row (see
! mld_zilu_fctint), according to the CSR storage format.
! uval - complex(psb_dpk_), dimension(:), input/output.
! The array where the entries of the row corresponding to the
! U factor are copied.
! uplevs - integer, dimension(:), input.
! The fill levels of the nonzero entries in the part of the
! U factor above the current row.
!
subroutine iluk_copyout(fill_in,ialg,i,m,row,rowlevs,nidx,idxs,&
& l1,l2,lja,lirp,lval,d,uja,uirp,uval,uplevs,info)
use psb_base_mod
implicit none
! Arguments
integer(psb_ipk_), intent(in) :: fill_in, ialg, i, m, nidx
integer(psb_ipk_), intent(inout) :: l1, l2, info
integer(psb_ipk_), intent(inout) :: rowlevs(:), idxs(:)
integer(psb_ipk_), allocatable, intent(inout) :: uja(:), uirp(:), lja(:), lirp(:),uplevs(:)
complex(psb_dpk_), allocatable, intent(inout) :: uval(:), lval(:)
complex(psb_dpk_), intent(inout) :: row(:), d(:)
! Local variables
integer(psb_ipk_) :: j,isz,err_act,int_err(5),idxp
character(len=20), parameter :: name='mld_ziluk_factint'
character(len=20) :: ch_err
info = psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_; goto 9999
end if
d(i) = zzero
do idxp=1,nidx
j = idxs(idxp)
if (j<i) then
!
! Copy the lower part of the row
!
if (rowlevs(j) <= fill_in) then
l1 = l1 + 1
if (size(lval) < l1) then
!
! Figure out a good reallocation size!
!
isz = (max((l1/i)*m,int(1.2*l1),l1+100))
call psb_realloc(isz,lval,info)
if (info == psb_success_) call psb_realloc(isz,lja,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
end if
lja(l1) = j
lval(l1) = row(j)
else if (ialg == mld_milu_n_) then
!
! MILU(k): add discarded entries to the diagonal one
!
d(i) = d(i) + row(j)
end if
!
! Re-initialize row(j) and rowlevs(j)
!
row(j) = zzero
rowlevs(j) = -(m+1)
else if (j == i) then
!
! Copy the diagonal entry of the row and re-initialize
! row(j) and rowlevs(j)
!
d(i) = d(i) + row(i)
row(i) = zzero
rowlevs(i) = -(m+1)
else if (j>i) then
!
! Copy the upper part of the row
!
if (rowlevs(j) <= fill_in) then
l2 = l2 + 1
if (size(uval) < l2) then
!
! Figure out a good reallocation size!
!
isz = max((l2/i)*m,int(1.2*l2),l2+100)
call psb_realloc(isz,uval,info)
if (info == psb_success_) call psb_realloc(isz,uja,info)
if (info == psb_success_) call psb_realloc(isz,uplevs,info,pad=(m+1))
if (info /= psb_success_) then
info=psb_err_from_subroutine_
call psb_errpush(info,name,a_err='Allocate')
goto 9999
end if
end if
uja(l2) = j
uval(l2) = row(j)
uplevs(l2) = rowlevs(j)
else if (ialg == mld_milu_n_) then
!
! MILU(k): add discarded entries to the diagonal one
!
d(i) = d(i) + row(j)
end if
!
! Re-initialize row(j) and rowlevs(j)
!
row(j) = zzero
rowlevs(j) = -(m+1)
end if
end do
!
! Store the pointers to the first non occupied entry of in
! lval and uval
!
lirp(i+1) = l1 + 1
uirp(i+1) = l2 + 1
!
! Check the pivot size
!
if (abs(d(i)) < d_epstol) then
!
! Too small pivot: unstable factorization
!
info = psb_err_pivot_too_small_
int_err(1) = i
write(ch_err,'(g20.10)') d(i)
call psb_errpush(info,name,i_err=int_err,a_err=ch_err)
goto 9999
else
!
! Compute 1/pivot
!
d(i) = zone/d(i)
end if
!
! Scale the upper part
!
do j=uirp(i), uirp(i+1)-1
uval(j) = d(i)*uval(j)
end do
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(err_act)
return
end subroutine iluk_copyout
end subroutine mld_ziluk_fact

File diff suppressed because it is too large Load Diff

@ -231,9 +231,9 @@ module mld_base_prec_type
integer(psb_ipk_), parameter :: mld_diag_scale_ = mld_slv_delta_+1 integer(psb_ipk_), parameter :: mld_diag_scale_ = mld_slv_delta_+1
integer(psb_ipk_), parameter :: mld_l1_diag_scale_ = mld_slv_delta_+2 integer(psb_ipk_), parameter :: mld_l1_diag_scale_ = mld_slv_delta_+2
integer(psb_ipk_), parameter :: mld_gs_ = mld_slv_delta_+3 integer(psb_ipk_), parameter :: mld_gs_ = mld_slv_delta_+3
integer(psb_ipk_), parameter :: mld_ilu_n_ = mld_slv_delta_+4 ! !$ integer(psb_ipk_), parameter :: mld_ilu_n_ = mld_slv_delta_+4
integer(psb_ipk_), parameter :: mld_milu_n_ = mld_slv_delta_+5 ! !$ integer(psb_ipk_), parameter :: mld_milu_n_ = mld_slv_delta_+5
integer(psb_ipk_), parameter :: mld_ilu_t_ = mld_slv_delta_+6 ! !$ integer(psb_ipk_), parameter :: mld_ilu_t_ = mld_slv_delta_+6
integer(psb_ipk_), parameter :: mld_slu_ = mld_slv_delta_+7 integer(psb_ipk_), parameter :: mld_slu_ = mld_slv_delta_+7
integer(psb_ipk_), parameter :: mld_umf_ = mld_slv_delta_+8 integer(psb_ipk_), parameter :: mld_umf_ = mld_slv_delta_+8
integer(psb_ipk_), parameter :: mld_sludist_ = mld_slv_delta_+9 integer(psb_ipk_), parameter :: mld_sludist_ = mld_slv_delta_+9
@ -423,6 +423,7 @@ contains
! The integer value corresponding to the string ! The integer value corresponding to the string
! !
function mld_stringval(string) result(val) function mld_stringval(string) result(val)
use psb_prec_const_mod
implicit none implicit none
! Arguments ! Arguments
character(len=*), intent(in) :: string character(len=*), intent(in) :: string
@ -455,11 +456,11 @@ contains
case('BGS','BWGS') case('BGS','BWGS')
val = mld_bwgs_ val = mld_bwgs_
case('ILU') case('ILU')
val = mld_ilu_n_ val = psb_ilu_n_
case('MILU') case('MILU')
val = mld_milu_n_ val = psb_milu_n_
case('ILUT') case('ILUT')
val = mld_ilu_t_ val = psb_ilu_t_
case('MUMPS') case('MUMPS')
val = mld_mumps_ val = mld_mumps_
case('UMF') case('UMF')
@ -908,12 +909,13 @@ contains
return return
end function is_legal_ml_fact end function is_legal_ml_fact
function is_legal_ilu_fact(ip) function is_legal_ilu_fact(ip)
use psb_prec_const_mod
implicit none implicit none
integer(psb_ipk_), intent(in) :: ip integer(psb_ipk_), intent(in) :: ip
logical :: is_legal_ilu_fact logical :: is_legal_ilu_fact
is_legal_ilu_fact = ((ip==mld_ilu_n_).or.& is_legal_ilu_fact = ((ip==psb_ilu_n_).or.&
& (ip==mld_milu_n_).or.(ip==mld_ilu_t_)) & (ip==psb_milu_n_).or.(ip==psb_ilu_t_))
return return
end function is_legal_ilu_fact end function is_legal_ilu_fact
function is_legal_d_omega(ip) function is_legal_d_omega(ip)

@ -58,7 +58,7 @@ module mld_c_ilu_solver
use mld_base_prec_type, only : mld_fact_names use mld_base_prec_type, only : mld_fact_names
use mld_c_base_solver_mod use mld_c_base_solver_mod
use mld_c_ilu_fact_mod use psb_c_ilu_fact_mod
type, extends(mld_c_base_solver_type) :: mld_c_ilu_solver_type type, extends(mld_c_base_solver_type) :: mld_c_ilu_solver_type
type(psb_cspmat_type) :: l, u type(psb_cspmat_type) :: l, u
@ -234,7 +234,7 @@ contains
! Arguments ! Arguments
class(mld_c_ilu_solver_type), intent(inout) :: sv class(mld_c_ilu_solver_type), intent(inout) :: sv
sv%fact_type = mld_ilu_n_ sv%fact_type = psb_ilu_n_
sv%fill_in = 0 sv%fill_in = 0
sv%thresh = szero sv%thresh = szero
@ -255,13 +255,13 @@ contains
info = psb_success_ info = psb_success_
call mld_check_def(sv%fact_type,& call mld_check_def(sv%fact_type,&
& 'Factorization',mld_ilu_n_,is_legal_ilu_fact) & 'Factorization',psb_ilu_n_,is_legal_ilu_fact)
select case(sv%fact_type) select case(sv%fact_type)
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
call mld_check_def(sv%fill_in,& call mld_check_def(sv%fill_in,&
& 'Level',izero,is_int_non_negative) & 'Level',izero,is_int_non_negative)
case(mld_ilu_t_) case(psb_ilu_t_)
call mld_check_def(sv%thresh,& call mld_check_def(sv%thresh,&
& 'Eps',szero,is_legal_s_fact_thrs) & 'Eps',szero,is_legal_s_fact_thrs)
end select end select
@ -432,9 +432,9 @@ contains
write(iout_,*) ' Incomplete factorization solver: ',& write(iout_,*) ' Incomplete factorization solver: ',&
& mld_fact_names(sv%fact_type) & mld_fact_names(sv%fact_type)
select case(sv%fact_type) select case(sv%fact_type)
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
write(iout_,*) ' Fill level:',sv%fill_in write(iout_,*) ' Fill level:',sv%fill_in
case(mld_ilu_t_) case(psb_ilu_t_)
write(iout_,*) ' Fill level:',sv%fill_in write(iout_,*) ' Fill level:',sv%fill_in
write(iout_,*) ' Fill threshold :',sv%thresh write(iout_,*) ' Fill threshold :',sv%thresh
end select end select
@ -489,7 +489,7 @@ contains
implicit none implicit none
integer(psb_ipk_) :: val integer(psb_ipk_) :: val
val = mld_ilu_n_ val = psb_ilu_n_
end function c_ilu_solver_get_id end function c_ilu_solver_get_id
function c_ilu_solver_get_wrksize() result(val) function c_ilu_solver_get_wrksize() result(val)

@ -100,9 +100,7 @@ module mld_c_mumps_solver
procedure, nopass :: get_fmt => c_mumps_solver_get_fmt procedure, nopass :: get_fmt => c_mumps_solver_get_fmt
procedure, nopass :: get_id => c_mumps_solver_get_id procedure, nopass :: get_id => c_mumps_solver_get_id
procedure, pass(sv) :: is_global => c_mumps_solver_is_global procedure, pass(sv) :: is_global => c_mumps_solver_is_global
#if defined(HAVE_FINAL)
final :: c_mumps_solver_finalize final :: c_mumps_solver_finalize
#endif
end type mld_c_mumps_solver_type end type mld_c_mumps_solver_type
@ -114,9 +112,7 @@ module mld_c_mumps_solver
& c_mumps_solver_default, c_mumps_solver_get_fmt, & & c_mumps_solver_default, c_mumps_solver_get_fmt, &
& c_mumps_solver_clone_settings, & & c_mumps_solver_clone_settings, &
& c_mumps_solver_get_id, c_mumps_solver_is_global & c_mumps_solver_get_id, c_mumps_solver_is_global
#if defined(HAVE_FINAL)
private :: c_mumps_solver_finalize private :: c_mumps_solver_finalize
#endif
interface interface
subroutine c_mumps_solver_apply_vect(alpha,sv,x,beta,y,desc_data,& subroutine c_mumps_solver_apply_vect(alpha,sv,x,beta,y,desc_data,&
@ -301,7 +297,6 @@ contains
#endif #endif
end subroutine c_mumps_solver_free end subroutine c_mumps_solver_free
#if defined(HAVE_FINAL)
subroutine c_mumps_solver_finalize(sv) subroutine c_mumps_solver_finalize(sv)
Implicit None Implicit None
@ -317,7 +312,6 @@ subroutine c_mumps_solver_finalize(sv)
return return
end subroutine c_mumps_solver_finalize end subroutine c_mumps_solver_finalize
#endif
subroutine c_mumps_solver_descr(sv,info,iout,coarse) subroutine c_mumps_solver_descr(sv,info,iout,coarse)

@ -72,9 +72,7 @@ module mld_c_slu_solver
procedure, pass(sv) :: sizeof => c_slu_solver_sizeof procedure, pass(sv) :: sizeof => c_slu_solver_sizeof
procedure, nopass :: get_fmt => c_slu_solver_get_fmt procedure, nopass :: get_fmt => c_slu_solver_get_fmt
procedure, nopass :: get_id => c_slu_solver_get_id procedure, nopass :: get_id => c_slu_solver_get_id
#if defined(HAVE_FINAL)
final :: c_slu_solver_finalize final :: c_slu_solver_finalize
#endif
end type mld_c_slu_solver_type end type mld_c_slu_solver_type
@ -83,9 +81,7 @@ module mld_c_slu_solver
& c_slu_solver_sizeof, c_slu_solver_apply_vect, & & c_slu_solver_sizeof, c_slu_solver_apply_vect, &
& c_slu_solver_get_fmt, c_slu_solver_get_id, & & c_slu_solver_get_fmt, c_slu_solver_get_id, &
& c_slu_solver_clear_data & c_slu_solver_clear_data
#if defined(HAVE_FINAL)
private :: c_slu_solver_finalize private :: c_slu_solver_finalize
#endif
@ -371,7 +367,6 @@ contains
return return
end subroutine c_slu_solver_clear_data end subroutine c_slu_solver_clear_data
#if defined(HAVE_FINAL)
subroutine c_slu_solver_finalize(sv) subroutine c_slu_solver_finalize(sv)
Implicit None Implicit None
@ -387,7 +382,6 @@ contains
return return
end subroutine c_slu_solver_finalize end subroutine c_slu_solver_finalize
#endif
subroutine c_slu_solver_descr(sv,info,iout,coarse) subroutine c_slu_solver_descr(sv,info,iout,coarse)

@ -58,7 +58,7 @@ module mld_d_ilu_solver
use mld_base_prec_type, only : mld_fact_names use mld_base_prec_type, only : mld_fact_names
use mld_d_base_solver_mod use mld_d_base_solver_mod
use mld_d_ilu_fact_mod use psb_d_ilu_fact_mod
type, extends(mld_d_base_solver_type) :: mld_d_ilu_solver_type type, extends(mld_d_base_solver_type) :: mld_d_ilu_solver_type
type(psb_dspmat_type) :: l, u type(psb_dspmat_type) :: l, u
@ -234,7 +234,7 @@ contains
! Arguments ! Arguments
class(mld_d_ilu_solver_type), intent(inout) :: sv class(mld_d_ilu_solver_type), intent(inout) :: sv
sv%fact_type = mld_ilu_n_ sv%fact_type = psb_ilu_n_
sv%fill_in = 0 sv%fill_in = 0
sv%thresh = dzero sv%thresh = dzero
@ -255,13 +255,13 @@ contains
info = psb_success_ info = psb_success_
call mld_check_def(sv%fact_type,& call mld_check_def(sv%fact_type,&
& 'Factorization',mld_ilu_n_,is_legal_ilu_fact) & 'Factorization',psb_ilu_n_,is_legal_ilu_fact)
select case(sv%fact_type) select case(sv%fact_type)
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
call mld_check_def(sv%fill_in,& call mld_check_def(sv%fill_in,&
& 'Level',izero,is_int_non_negative) & 'Level',izero,is_int_non_negative)
case(mld_ilu_t_) case(psb_ilu_t_)
call mld_check_def(sv%thresh,& call mld_check_def(sv%thresh,&
& 'Eps',dzero,is_legal_d_fact_thrs) & 'Eps',dzero,is_legal_d_fact_thrs)
end select end select
@ -432,9 +432,9 @@ contains
write(iout_,*) ' Incomplete factorization solver: ',& write(iout_,*) ' Incomplete factorization solver: ',&
& mld_fact_names(sv%fact_type) & mld_fact_names(sv%fact_type)
select case(sv%fact_type) select case(sv%fact_type)
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
write(iout_,*) ' Fill level:',sv%fill_in write(iout_,*) ' Fill level:',sv%fill_in
case(mld_ilu_t_) case(psb_ilu_t_)
write(iout_,*) ' Fill level:',sv%fill_in write(iout_,*) ' Fill level:',sv%fill_in
write(iout_,*) ' Fill threshold :',sv%thresh write(iout_,*) ' Fill threshold :',sv%thresh
end select end select
@ -489,7 +489,7 @@ contains
implicit none implicit none
integer(psb_ipk_) :: val integer(psb_ipk_) :: val
val = mld_ilu_n_ val = psb_ilu_n_
end function d_ilu_solver_get_id end function d_ilu_solver_get_id
function d_ilu_solver_get_wrksize() result(val) function d_ilu_solver_get_wrksize() result(val)

@ -100,9 +100,7 @@ module mld_d_mumps_solver
procedure, nopass :: get_fmt => d_mumps_solver_get_fmt procedure, nopass :: get_fmt => d_mumps_solver_get_fmt
procedure, nopass :: get_id => d_mumps_solver_get_id procedure, nopass :: get_id => d_mumps_solver_get_id
procedure, pass(sv) :: is_global => d_mumps_solver_is_global procedure, pass(sv) :: is_global => d_mumps_solver_is_global
#if defined(HAVE_FINAL)
final :: d_mumps_solver_finalize final :: d_mumps_solver_finalize
#endif
end type mld_d_mumps_solver_type end type mld_d_mumps_solver_type
@ -114,9 +112,7 @@ module mld_d_mumps_solver
& d_mumps_solver_default, d_mumps_solver_get_fmt, & & d_mumps_solver_default, d_mumps_solver_get_fmt, &
& d_mumps_solver_clone_settings, & & d_mumps_solver_clone_settings, &
& d_mumps_solver_get_id, d_mumps_solver_is_global & d_mumps_solver_get_id, d_mumps_solver_is_global
#if defined(HAVE_FINAL)
private :: d_mumps_solver_finalize private :: d_mumps_solver_finalize
#endif
interface interface
subroutine d_mumps_solver_apply_vect(alpha,sv,x,beta,y,desc_data,& subroutine d_mumps_solver_apply_vect(alpha,sv,x,beta,y,desc_data,&
@ -301,7 +297,6 @@ contains
#endif #endif
end subroutine d_mumps_solver_free end subroutine d_mumps_solver_free
#if defined(HAVE_FINAL)
subroutine d_mumps_solver_finalize(sv) subroutine d_mumps_solver_finalize(sv)
Implicit None Implicit None
@ -317,7 +312,6 @@ subroutine d_mumps_solver_finalize(sv)
return return
end subroutine d_mumps_solver_finalize end subroutine d_mumps_solver_finalize
#endif
subroutine d_mumps_solver_descr(sv,info,iout,coarse) subroutine d_mumps_solver_descr(sv,info,iout,coarse)

@ -72,9 +72,7 @@ module mld_d_slu_solver
procedure, pass(sv) :: sizeof => d_slu_solver_sizeof procedure, pass(sv) :: sizeof => d_slu_solver_sizeof
procedure, nopass :: get_fmt => d_slu_solver_get_fmt procedure, nopass :: get_fmt => d_slu_solver_get_fmt
procedure, nopass :: get_id => d_slu_solver_get_id procedure, nopass :: get_id => d_slu_solver_get_id
#if defined(HAVE_FINAL)
final :: d_slu_solver_finalize final :: d_slu_solver_finalize
#endif
end type mld_d_slu_solver_type end type mld_d_slu_solver_type
@ -83,9 +81,7 @@ module mld_d_slu_solver
& d_slu_solver_sizeof, d_slu_solver_apply_vect, & & d_slu_solver_sizeof, d_slu_solver_apply_vect, &
& d_slu_solver_get_fmt, d_slu_solver_get_id, & & d_slu_solver_get_fmt, d_slu_solver_get_id, &
& d_slu_solver_clear_data & d_slu_solver_clear_data
#if defined(HAVE_FINAL)
private :: d_slu_solver_finalize private :: d_slu_solver_finalize
#endif
@ -371,7 +367,6 @@ contains
return return
end subroutine d_slu_solver_clear_data end subroutine d_slu_solver_clear_data
#if defined(HAVE_FINAL)
subroutine d_slu_solver_finalize(sv) subroutine d_slu_solver_finalize(sv)
Implicit None Implicit None
@ -387,7 +382,6 @@ contains
return return
end subroutine d_slu_solver_finalize end subroutine d_slu_solver_finalize
#endif
subroutine d_slu_solver_descr(sv,info,iout,coarse) subroutine d_slu_solver_descr(sv,info,iout,coarse)

@ -72,9 +72,7 @@ module mld_d_sludist_solver
procedure, nopass :: get_fmt => d_sludist_solver_get_fmt procedure, nopass :: get_fmt => d_sludist_solver_get_fmt
procedure, nopass :: get_id => d_sludist_solver_get_id procedure, nopass :: get_id => d_sludist_solver_get_id
procedure, pass(sv) :: is_global => d_sludist_solver_is_global procedure, pass(sv) :: is_global => d_sludist_solver_is_global
#if defined(HAVE_FINAL)
final :: d_sludist_solver_finalize final :: d_sludist_solver_finalize
#endif
end type mld_d_sludist_solver_type end type mld_d_sludist_solver_type
@ -83,9 +81,7 @@ module mld_d_sludist_solver
& d_sludist_solver_sizeof, d_sludist_solver_apply_vect, & & d_sludist_solver_sizeof, d_sludist_solver_apply_vect, &
& d_sludist_solver_get_fmt, d_sludist_solver_get_id, & & d_sludist_solver_get_fmt, d_sludist_solver_get_id, &
& d_sludist_solver_is_global, d_sludist_solver_clear_data & d_sludist_solver_is_global, d_sludist_solver_clear_data
#if defined(HAVE_FINAL)
private :: d_sludist_solver_finalize private :: d_sludist_solver_finalize
#endif
interface interface
@ -389,7 +385,6 @@ contains
val = .true. val = .true.
end function d_sludist_solver_is_global end function d_sludist_solver_is_global
#if defined(HAVE_FINAL)
subroutine d_sludist_solver_finalize(sv) subroutine d_sludist_solver_finalize(sv)
Implicit None Implicit None
@ -405,7 +400,6 @@ contains
return return
end subroutine d_sludist_solver_finalize end subroutine d_sludist_solver_finalize
#endif
subroutine d_sludist_solver_descr(sv,info,iout,coarse) subroutine d_sludist_solver_descr(sv,info,iout,coarse)

@ -71,9 +71,7 @@ module mld_d_umf_solver
procedure, pass(sv) :: sizeof => d_umf_solver_sizeof procedure, pass(sv) :: sizeof => d_umf_solver_sizeof
procedure, nopass :: get_fmt => d_umf_solver_get_fmt procedure, nopass :: get_fmt => d_umf_solver_get_fmt
procedure, nopass :: get_id => d_umf_solver_get_id procedure, nopass :: get_id => d_umf_solver_get_id
#if defined(HAVE_FINAL)
final :: d_umf_solver_finalize final :: d_umf_solver_finalize
#endif
end type mld_d_umf_solver_type end type mld_d_umf_solver_type
@ -82,9 +80,7 @@ module mld_d_umf_solver
& d_umf_solver_sizeof, d_umf_solver_apply_vect, & & d_umf_solver_sizeof, d_umf_solver_apply_vect, &
& d_umf_solver_get_fmt, d_umf_solver_get_id, & & d_umf_solver_get_fmt, d_umf_solver_get_id, &
& d_umf_solver_clear_data & d_umf_solver_clear_data
#if defined(HAVE_FINAL)
private :: d_umf_solver_finalize private :: d_umf_solver_finalize
#endif
@ -377,7 +373,6 @@ contains
return return
end subroutine d_umf_solver_clear_data end subroutine d_umf_solver_clear_data
#if defined(HAVE_FINAL)
subroutine d_umf_solver_finalize(sv) subroutine d_umf_solver_finalize(sv)
Implicit None Implicit None
@ -393,7 +388,6 @@ contains
return return
end subroutine d_umf_solver_finalize end subroutine d_umf_solver_finalize
#endif
subroutine d_umf_solver_descr(sv,info,iout,coarse) subroutine d_umf_solver_descr(sv,info,iout,coarse)

@ -58,7 +58,7 @@ module mld_s_ilu_solver
use mld_base_prec_type, only : mld_fact_names use mld_base_prec_type, only : mld_fact_names
use mld_s_base_solver_mod use mld_s_base_solver_mod
use mld_s_ilu_fact_mod use psb_s_ilu_fact_mod
type, extends(mld_s_base_solver_type) :: mld_s_ilu_solver_type type, extends(mld_s_base_solver_type) :: mld_s_ilu_solver_type
type(psb_sspmat_type) :: l, u type(psb_sspmat_type) :: l, u
@ -234,7 +234,7 @@ contains
! Arguments ! Arguments
class(mld_s_ilu_solver_type), intent(inout) :: sv class(mld_s_ilu_solver_type), intent(inout) :: sv
sv%fact_type = mld_ilu_n_ sv%fact_type = psb_ilu_n_
sv%fill_in = 0 sv%fill_in = 0
sv%thresh = szero sv%thresh = szero
@ -255,13 +255,13 @@ contains
info = psb_success_ info = psb_success_
call mld_check_def(sv%fact_type,& call mld_check_def(sv%fact_type,&
& 'Factorization',mld_ilu_n_,is_legal_ilu_fact) & 'Factorization',psb_ilu_n_,is_legal_ilu_fact)
select case(sv%fact_type) select case(sv%fact_type)
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
call mld_check_def(sv%fill_in,& call mld_check_def(sv%fill_in,&
& 'Level',izero,is_int_non_negative) & 'Level',izero,is_int_non_negative)
case(mld_ilu_t_) case(psb_ilu_t_)
call mld_check_def(sv%thresh,& call mld_check_def(sv%thresh,&
& 'Eps',szero,is_legal_s_fact_thrs) & 'Eps',szero,is_legal_s_fact_thrs)
end select end select
@ -432,9 +432,9 @@ contains
write(iout_,*) ' Incomplete factorization solver: ',& write(iout_,*) ' Incomplete factorization solver: ',&
& mld_fact_names(sv%fact_type) & mld_fact_names(sv%fact_type)
select case(sv%fact_type) select case(sv%fact_type)
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
write(iout_,*) ' Fill level:',sv%fill_in write(iout_,*) ' Fill level:',sv%fill_in
case(mld_ilu_t_) case(psb_ilu_t_)
write(iout_,*) ' Fill level:',sv%fill_in write(iout_,*) ' Fill level:',sv%fill_in
write(iout_,*) ' Fill threshold :',sv%thresh write(iout_,*) ' Fill threshold :',sv%thresh
end select end select
@ -489,7 +489,7 @@ contains
implicit none implicit none
integer(psb_ipk_) :: val integer(psb_ipk_) :: val
val = mld_ilu_n_ val = psb_ilu_n_
end function s_ilu_solver_get_id end function s_ilu_solver_get_id
function s_ilu_solver_get_wrksize() result(val) function s_ilu_solver_get_wrksize() result(val)

@ -100,9 +100,7 @@ module mld_s_mumps_solver
procedure, nopass :: get_fmt => s_mumps_solver_get_fmt procedure, nopass :: get_fmt => s_mumps_solver_get_fmt
procedure, nopass :: get_id => s_mumps_solver_get_id procedure, nopass :: get_id => s_mumps_solver_get_id
procedure, pass(sv) :: is_global => s_mumps_solver_is_global procedure, pass(sv) :: is_global => s_mumps_solver_is_global
#if defined(HAVE_FINAL)
final :: s_mumps_solver_finalize final :: s_mumps_solver_finalize
#endif
end type mld_s_mumps_solver_type end type mld_s_mumps_solver_type
@ -114,9 +112,7 @@ module mld_s_mumps_solver
& s_mumps_solver_default, s_mumps_solver_get_fmt, & & s_mumps_solver_default, s_mumps_solver_get_fmt, &
& s_mumps_solver_clone_settings, & & s_mumps_solver_clone_settings, &
& s_mumps_solver_get_id, s_mumps_solver_is_global & s_mumps_solver_get_id, s_mumps_solver_is_global
#if defined(HAVE_FINAL)
private :: s_mumps_solver_finalize private :: s_mumps_solver_finalize
#endif
interface interface
subroutine s_mumps_solver_apply_vect(alpha,sv,x,beta,y,desc_data,& subroutine s_mumps_solver_apply_vect(alpha,sv,x,beta,y,desc_data,&
@ -301,7 +297,6 @@ contains
#endif #endif
end subroutine s_mumps_solver_free end subroutine s_mumps_solver_free
#if defined(HAVE_FINAL)
subroutine s_mumps_solver_finalize(sv) subroutine s_mumps_solver_finalize(sv)
Implicit None Implicit None
@ -317,7 +312,6 @@ subroutine s_mumps_solver_finalize(sv)
return return
end subroutine s_mumps_solver_finalize end subroutine s_mumps_solver_finalize
#endif
subroutine s_mumps_solver_descr(sv,info,iout,coarse) subroutine s_mumps_solver_descr(sv,info,iout,coarse)

@ -72,9 +72,7 @@ module mld_s_slu_solver
procedure, pass(sv) :: sizeof => s_slu_solver_sizeof procedure, pass(sv) :: sizeof => s_slu_solver_sizeof
procedure, nopass :: get_fmt => s_slu_solver_get_fmt procedure, nopass :: get_fmt => s_slu_solver_get_fmt
procedure, nopass :: get_id => s_slu_solver_get_id procedure, nopass :: get_id => s_slu_solver_get_id
#if defined(HAVE_FINAL)
final :: s_slu_solver_finalize final :: s_slu_solver_finalize
#endif
end type mld_s_slu_solver_type end type mld_s_slu_solver_type
@ -83,9 +81,7 @@ module mld_s_slu_solver
& s_slu_solver_sizeof, s_slu_solver_apply_vect, & & s_slu_solver_sizeof, s_slu_solver_apply_vect, &
& s_slu_solver_get_fmt, s_slu_solver_get_id, & & s_slu_solver_get_fmt, s_slu_solver_get_id, &
& s_slu_solver_clear_data & s_slu_solver_clear_data
#if defined(HAVE_FINAL)
private :: s_slu_solver_finalize private :: s_slu_solver_finalize
#endif
@ -371,7 +367,6 @@ contains
return return
end subroutine s_slu_solver_clear_data end subroutine s_slu_solver_clear_data
#if defined(HAVE_FINAL)
subroutine s_slu_solver_finalize(sv) subroutine s_slu_solver_finalize(sv)
Implicit None Implicit None
@ -387,7 +382,6 @@ contains
return return
end subroutine s_slu_solver_finalize end subroutine s_slu_solver_finalize
#endif
subroutine s_slu_solver_descr(sv,info,iout,coarse) subroutine s_slu_solver_descr(sv,info,iout,coarse)

@ -58,7 +58,7 @@ module mld_z_ilu_solver
use mld_base_prec_type, only : mld_fact_names use mld_base_prec_type, only : mld_fact_names
use mld_z_base_solver_mod use mld_z_base_solver_mod
use mld_z_ilu_fact_mod use psb_z_ilu_fact_mod
type, extends(mld_z_base_solver_type) :: mld_z_ilu_solver_type type, extends(mld_z_base_solver_type) :: mld_z_ilu_solver_type
type(psb_zspmat_type) :: l, u type(psb_zspmat_type) :: l, u
@ -234,7 +234,7 @@ contains
! Arguments ! Arguments
class(mld_z_ilu_solver_type), intent(inout) :: sv class(mld_z_ilu_solver_type), intent(inout) :: sv
sv%fact_type = mld_ilu_n_ sv%fact_type = psb_ilu_n_
sv%fill_in = 0 sv%fill_in = 0
sv%thresh = dzero sv%thresh = dzero
@ -255,13 +255,13 @@ contains
info = psb_success_ info = psb_success_
call mld_check_def(sv%fact_type,& call mld_check_def(sv%fact_type,&
& 'Factorization',mld_ilu_n_,is_legal_ilu_fact) & 'Factorization',psb_ilu_n_,is_legal_ilu_fact)
select case(sv%fact_type) select case(sv%fact_type)
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
call mld_check_def(sv%fill_in,& call mld_check_def(sv%fill_in,&
& 'Level',izero,is_int_non_negative) & 'Level',izero,is_int_non_negative)
case(mld_ilu_t_) case(psb_ilu_t_)
call mld_check_def(sv%thresh,& call mld_check_def(sv%thresh,&
& 'Eps',dzero,is_legal_d_fact_thrs) & 'Eps',dzero,is_legal_d_fact_thrs)
end select end select
@ -432,9 +432,9 @@ contains
write(iout_,*) ' Incomplete factorization solver: ',& write(iout_,*) ' Incomplete factorization solver: ',&
& mld_fact_names(sv%fact_type) & mld_fact_names(sv%fact_type)
select case(sv%fact_type) select case(sv%fact_type)
case(mld_ilu_n_,mld_milu_n_) case(psb_ilu_n_,psb_milu_n_)
write(iout_,*) ' Fill level:',sv%fill_in write(iout_,*) ' Fill level:',sv%fill_in
case(mld_ilu_t_) case(psb_ilu_t_)
write(iout_,*) ' Fill level:',sv%fill_in write(iout_,*) ' Fill level:',sv%fill_in
write(iout_,*) ' Fill threshold :',sv%thresh write(iout_,*) ' Fill threshold :',sv%thresh
end select end select
@ -489,7 +489,7 @@ contains
implicit none implicit none
integer(psb_ipk_) :: val integer(psb_ipk_) :: val
val = mld_ilu_n_ val = psb_ilu_n_
end function z_ilu_solver_get_id end function z_ilu_solver_get_id
function z_ilu_solver_get_wrksize() result(val) function z_ilu_solver_get_wrksize() result(val)

@ -100,9 +100,7 @@ module mld_z_mumps_solver
procedure, nopass :: get_fmt => z_mumps_solver_get_fmt procedure, nopass :: get_fmt => z_mumps_solver_get_fmt
procedure, nopass :: get_id => z_mumps_solver_get_id procedure, nopass :: get_id => z_mumps_solver_get_id
procedure, pass(sv) :: is_global => z_mumps_solver_is_global procedure, pass(sv) :: is_global => z_mumps_solver_is_global
#if defined(HAVE_FINAL)
final :: z_mumps_solver_finalize final :: z_mumps_solver_finalize
#endif
end type mld_z_mumps_solver_type end type mld_z_mumps_solver_type
@ -114,9 +112,7 @@ module mld_z_mumps_solver
& z_mumps_solver_default, z_mumps_solver_get_fmt, & & z_mumps_solver_default, z_mumps_solver_get_fmt, &
& z_mumps_solver_clone_settings, & & z_mumps_solver_clone_settings, &
& z_mumps_solver_get_id, z_mumps_solver_is_global & z_mumps_solver_get_id, z_mumps_solver_is_global
#if defined(HAVE_FINAL)
private :: z_mumps_solver_finalize private :: z_mumps_solver_finalize
#endif
interface interface
subroutine z_mumps_solver_apply_vect(alpha,sv,x,beta,y,desc_data,& subroutine z_mumps_solver_apply_vect(alpha,sv,x,beta,y,desc_data,&
@ -301,7 +297,6 @@ contains
#endif #endif
end subroutine z_mumps_solver_free end subroutine z_mumps_solver_free
#if defined(HAVE_FINAL)
subroutine z_mumps_solver_finalize(sv) subroutine z_mumps_solver_finalize(sv)
Implicit None Implicit None
@ -317,7 +312,6 @@ subroutine z_mumps_solver_finalize(sv)
return return
end subroutine z_mumps_solver_finalize end subroutine z_mumps_solver_finalize
#endif
subroutine z_mumps_solver_descr(sv,info,iout,coarse) subroutine z_mumps_solver_descr(sv,info,iout,coarse)

@ -72,9 +72,7 @@ module mld_z_slu_solver
procedure, pass(sv) :: sizeof => z_slu_solver_sizeof procedure, pass(sv) :: sizeof => z_slu_solver_sizeof
procedure, nopass :: get_fmt => z_slu_solver_get_fmt procedure, nopass :: get_fmt => z_slu_solver_get_fmt
procedure, nopass :: get_id => z_slu_solver_get_id procedure, nopass :: get_id => z_slu_solver_get_id
#if defined(HAVE_FINAL)
final :: z_slu_solver_finalize final :: z_slu_solver_finalize
#endif
end type mld_z_slu_solver_type end type mld_z_slu_solver_type
@ -83,9 +81,7 @@ module mld_z_slu_solver
& z_slu_solver_sizeof, z_slu_solver_apply_vect, & & z_slu_solver_sizeof, z_slu_solver_apply_vect, &
& z_slu_solver_get_fmt, z_slu_solver_get_id, & & z_slu_solver_get_fmt, z_slu_solver_get_id, &
& z_slu_solver_clear_data & z_slu_solver_clear_data
#if defined(HAVE_FINAL)
private :: z_slu_solver_finalize private :: z_slu_solver_finalize
#endif
@ -371,7 +367,6 @@ contains
return return
end subroutine z_slu_solver_clear_data end subroutine z_slu_solver_clear_data
#if defined(HAVE_FINAL)
subroutine z_slu_solver_finalize(sv) subroutine z_slu_solver_finalize(sv)
Implicit None Implicit None
@ -387,7 +382,6 @@ contains
return return
end subroutine z_slu_solver_finalize end subroutine z_slu_solver_finalize
#endif
subroutine z_slu_solver_descr(sv,info,iout,coarse) subroutine z_slu_solver_descr(sv,info,iout,coarse)

@ -72,9 +72,7 @@ module mld_z_sludist_solver
procedure, nopass :: get_fmt => z_sludist_solver_get_fmt procedure, nopass :: get_fmt => z_sludist_solver_get_fmt
procedure, nopass :: get_id => z_sludist_solver_get_id procedure, nopass :: get_id => z_sludist_solver_get_id
procedure, pass(sv) :: is_global => z_sludist_solver_is_global procedure, pass(sv) :: is_global => z_sludist_solver_is_global
#if defined(HAVE_FINAL)
final :: z_sludist_solver_finalize final :: z_sludist_solver_finalize
#endif
end type mld_z_sludist_solver_type end type mld_z_sludist_solver_type
@ -83,9 +81,7 @@ module mld_z_sludist_solver
& z_sludist_solver_sizeof, z_sludist_solver_apply_vect, & & z_sludist_solver_sizeof, z_sludist_solver_apply_vect, &
& z_sludist_solver_get_fmt, z_sludist_solver_get_id, & & z_sludist_solver_get_fmt, z_sludist_solver_get_id, &
& z_sludist_solver_is_global, z_sludist_solver_clear_data & z_sludist_solver_is_global, z_sludist_solver_clear_data
#if defined(HAVE_FINAL)
private :: z_sludist_solver_finalize private :: z_sludist_solver_finalize
#endif
interface interface
@ -389,7 +385,6 @@ contains
val = .true. val = .true.
end function z_sludist_solver_is_global end function z_sludist_solver_is_global
#if defined(HAVE_FINAL)
subroutine z_sludist_solver_finalize(sv) subroutine z_sludist_solver_finalize(sv)
Implicit None Implicit None
@ -405,7 +400,6 @@ contains
return return
end subroutine z_sludist_solver_finalize end subroutine z_sludist_solver_finalize
#endif
subroutine z_sludist_solver_descr(sv,info,iout,coarse) subroutine z_sludist_solver_descr(sv,info,iout,coarse)

@ -71,9 +71,7 @@ module mld_z_umf_solver
procedure, pass(sv) :: sizeof => z_umf_solver_sizeof procedure, pass(sv) :: sizeof => z_umf_solver_sizeof
procedure, nopass :: get_fmt => z_umf_solver_get_fmt procedure, nopass :: get_fmt => z_umf_solver_get_fmt
procedure, nopass :: get_id => z_umf_solver_get_id procedure, nopass :: get_id => z_umf_solver_get_id
#if defined(HAVE_FINAL)
final :: z_umf_solver_finalize final :: z_umf_solver_finalize
#endif
end type mld_z_umf_solver_type end type mld_z_umf_solver_type
@ -82,9 +80,7 @@ module mld_z_umf_solver
& z_umf_solver_sizeof, z_umf_solver_apply_vect, & & z_umf_solver_sizeof, z_umf_solver_apply_vect, &
& z_umf_solver_get_fmt, z_umf_solver_get_id, & & z_umf_solver_get_fmt, z_umf_solver_get_id, &
& z_umf_solver_clear_data & z_umf_solver_clear_data
#if defined(HAVE_FINAL)
private :: z_umf_solver_finalize private :: z_umf_solver_finalize
#endif
@ -377,7 +373,6 @@ contains
return return
end subroutine z_umf_solver_clear_data end subroutine z_umf_solver_clear_data
#if defined(HAVE_FINAL)
subroutine z_umf_solver_finalize(sv) subroutine z_umf_solver_finalize(sv)
Implicit None Implicit None
@ -393,7 +388,6 @@ contains
return return
end subroutine z_umf_solver_finalize end subroutine z_umf_solver_finalize
#endif
subroutine z_umf_solver_descr(sv,info,iout,coarse) subroutine z_umf_solver_descr(sv,info,iout,coarse)

Loading…
Cancel
Save