@ -46,30 +46,20 @@
! - choice = 2 , hybrid three - level Schwarz preconditioner ( Sec . 6.1 , Fig . 3 )
! - choice = 3 , additive three - level Schwarz preconditioner ( Sec . 6.1 , Fig . 4 )
!
!
! The PDE is a general second order equation in 3 d
!
! b1 dd ( u ) b2 dd ( u ) b3 dd ( u ) a1 d ( u ) a2 d ( u ) a 3 d ( u )
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + a4 u = 0
! a1 dd ( u ) a2 dd ( u ) a3 dd ( u ) b1 d ( u ) b2 d ( u ) b 3 d ( u )
! - - - - - - - - - - - - - - - - - - - - - + - - - - - + - - - - - - + - - - - - - + c u = f
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions , on the unit cube 0 < = x , y , z < = 1.
!
! Example taken from :
! C . T . Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way ,
! then the corresponding vector is distributed according to a BLOCK
! data distribution .
! with Dirichlet boundary conditions
! u = g
!
! Boundary conditions are set in a very simple way , by adding
! equations of the form
! on the unit cube 0 < = x , y , z < = 1.
!
! u ( x , y ) = exp ( - x ^ 2 - y ^ 2 - z ^ 2 )
!
! Note that if a1= a2 = a3 = a4 = 0. , the PDE is the well - known Laplace equation .
! Note that if b1 = b2 = b3 = c = 0. , the PDE is the Laplace equation .
!
program mld_dexample_1lev
use psb_base_mod
@ -91,7 +81,7 @@ program mld_dexample_1lev
type ( mld_dprec_type ) :: P
! right - hand side , solution and residual vectors
real( psb_dpk_ ) , allocatable , save :: b ( : ) , x ( : ) , r ( : )
type( psb_d_vect_type ) :: x , b , r
! solver parameters
real ( psb_dpk_ ) :: tol , err
@ -105,6 +95,7 @@ program mld_dexample_1lev
integer ( psb_long_int_k_ ) :: amatsize , precsize , descsize
integer :: idim , nlev , ierr , ircode
real ( psb_dpk_ ) :: t1 , t2 , tprec , resmx , resmxp
character ( len = 5 ) :: afmt = 'CSR'
character ( len = 20 ) :: name
! initialize the parallel environment
@ -137,7 +128,8 @@ program mld_dexample_1lev
call psb_barrier ( ictxt )
t1 = psb_wtime ( )
call create_matrix ( idim , a , b , x , desc_a , ictxt , info )
call psb_gen_pde3d ( ictxt , idim , a , b , x , desc_a , afmt , &
& a1 , a2 , a3 , b1 , b2 , b3 , c , g , info )
call psb_barrier ( ictxt )
t2 = psb_wtime ( ) - t1
if ( info / = psb_success_ ) then
@ -172,7 +164,7 @@ program mld_dexample_1lev
! set the initial guess
call psb_geall ( x , desc_A , info )
x ( : ) = 0.0
call x % set ( dzero )
call psb_geasb ( x , desc_A , info )
! solve Ax = b with preconditioned BiCGSTAB
@ -186,12 +178,12 @@ program mld_dexample_1lev
call psb_amx ( ictxt , t2 )
call psb_geall ( r , desc_A , info )
r ( : ) = 0.0
call r % set ( dzero )
call psb_geasb ( r , desc_A , info )
call psb_geaxpby ( done , b , dzero , r , desc_A , info )
call psb_spmm ( - done , A , x , done , r , desc_A , info )
call psb_genrm2s ( resmx , r , desc_A , info )
call psb_geamaxs ( resmxp , r , desc_A , info )
resmx = psb_genrm2 ( r , desc_A , info )
resmxp = psb_geamax ( r , desc_A , info )
amatsize = a % sizeof ( )
descsize = desc_a % sizeof ( )
@ -259,332 +251,60 @@ contains
call psb_bcast ( ictxt , tol )
end subroutine get_parms
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs
!
subroutine create_matrix ( idim , a , b , xv , desc_a , ictxt , info )
!
! Discretize the partial diferential equation
!
! b1 dd ( u ) b2 dd ( u ) b3 dd ( u ) a1 d ( u ) a2 d ( u ) a3 d ( u )
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + a4 u = 0
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions , on the unit cube 0 < = x , y , z < = 1.
!
! Boundary conditions are set in a very simple way , by adding
! equations of the form
!
! u ( x , y ) = exp ( - x ^ 2 - y ^ 2 - z ^ 2 )
!
! Note that if a1 = a2 = a3 = a4 = 0. , the PDE is the well - known Laplace equation .
!
use psb_base_mod
implicit none
integer :: idim
integer , parameter :: nb = 20
real ( psb_dpk_ ) , allocatable :: b ( : ) , xv ( : )
type ( psb_desc_type ) :: desc_a
integer :: ictxt , info
character :: afmt * 5
type ( psb_dspmat_type ) :: a
real ( psb_dpk_ ) :: zt ( nb ) , x , y , z
integer :: m , n , nnz , glob_row , nlr , i , ii , ib , k
integer :: ix , iy , iz , ia , indx_owner , ipoints
integer :: np , iam , nr , nt
integer :: element
integer , allocatable :: irow ( : ) , icol ( : ) , myidx ( : )
real ( psb_dpk_ ) , allocatable :: val ( : )
! deltah dimension of each grid cell
! deltat discretization time
real ( psb_dpk_ ) :: deltah , deltah2
real ( psb_dpk_ ) , parameter :: rhs = 0.d0 , one = 1.d0 , zero = 0.d0
real ( psb_dpk_ ) :: t0 , t1 , t2 , t3 , tasb , talc , ttot , tgen
real ( psb_dpk_ ) :: a1 , a2 , a3 , a4 , b1 , b2 , b3
external :: a1 , a2 , a3 , a4 , b1 , b2 , b3
integer :: err_act
character ( len = 20 ) :: name , ch_err
info = psb_success_
name = 'create_matrix'
call psb_erractionsave ( err_act )
call psb_info ( ictxt , iam , np )
deltah = 1.d0 / ( idim - 1 )
deltah2 = deltah * deltah
! initialize array descriptor and sparse matrix storage . provide an
! estimate of the number of non zeroes
ipoints = idim - 2
m = ipoints * ipoints * ipoints
n = m
nnz = ( ( n * 9 ) / ( np ) )
if ( iam == psb_root_ ) write ( psb_out_unit , '("Generating Matrix (size=",i0,")...")' ) n
!
! Using a simple BLOCK distribution .
!
nt = ( m + np - 1 ) / np
nr = max ( 0 , min ( nt , m - ( iam * nt ) ) )
nt = nr
call psb_sum ( ictxt , nt )
if ( nt / = m ) write ( psb_err_unit , * ) iam , 'Initialization error ' , nr , nt , m
call psb_barrier ( ictxt )
t0 = psb_wtime ( )
call psb_cdall ( ictxt , desc_a , info , nl = nr )
if ( info == psb_success_ ) call psb_spall ( a , desc_a , info , nnz = nnz )
! define rhs from boundary conditions ; also build initial guess
if ( info == psb_success_ ) call psb_geall ( b , desc_a , info )
if ( info == psb_success_ ) call psb_geall ( xv , desc_a , info )
nlr = psb_cd_get_local_rows ( desc_a )
call psb_barrier ( ictxt )
talc = psb_wtime ( ) - t0
if ( info / = psb_success_ ) then
info = psb_err_from_subroutine_
ch_err = 'allocation rout.'
call psb_errpush ( info , name , a_err = ch_err )
go to 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time ; just a small matrix . might be extended to generate
! a bunch of rows per call .
!
allocate ( val ( 20 * nb ) , irow ( 20 * nb ) , &
& icol ( 20 * nb ) , myidx ( nlr ) , stat = info )
if ( info / = psb_success_ ) then
info = psb_err_alloc_dealloc_
call psb_errpush ( info , name )
go to 9999
endif
do i = 1 , nlr
myidx ( i ) = i
end do
call psb_loc_to_glob ( myidx , desc_a , info )
! loop over rows belonging to current process in a block
! distribution .
call psb_barrier ( ictxt )
t1 = psb_wtime ( )
do ii = 1 , nlr , nb
ib = min ( nb , nlr - ii + 1 )
element = 1
do k = 1 , ib
i = ii + k - 1
! local matrix pointer
glob_row = myidx ( i )
! compute gridpoint coordinates
if ( mod ( glob_row , ipoints * ipoints ) == 0 ) then
ix = glob_row / ( ipoints * ipoints )
else
ix = glob_row / ( ipoints * ipoints ) + 1
endif
if ( mod ( ( glob_row - ( ix - 1 ) * ipoints * ipoints ) , ipoints ) == 0 ) then
iy = ( glob_row - ( ix - 1 ) * ipoints * ipoints ) / ipoints
else
iy = ( glob_row - ( ix - 1 ) * ipoints * ipoints ) / ipoints + 1
endif
iz = glob_row - ( ix - 1 ) * ipoints * ipoints - ( iy - 1 ) * ipoints
! x , y , x coordinates
x = ix * deltah
y = iy * deltah
z = iz * deltah
! check on boundary points
zt ( k ) = 0.d0
! internal point : build discretization
!
! term depending on ( x - 1 , y , z )
! functions parametrizing the differential equation
!
if ( ix == 1 ) then
val ( element ) = - b1 ( x , y , z ) / deltah2 - a1 ( x , y , z ) / deltah
zt ( k ) = exp ( - x ** 2 - y ** 2 - z ** 2 ) * ( - val ( element ) )
else
val ( element ) = - b1 ( x , y , z ) / deltah2 - a1 ( x , y , z ) / deltah
icol ( element ) = ( ix - 2 ) * ipoints * ipoints + ( iy - 1 ) * ipoints + ( iz )
irow ( element ) = glob_row
element = element + 1
endif
! term depending on ( x , y - 1 , z )
if ( iy == 1 ) then
val ( element ) = - b2 ( x , y , z ) / deltah2 - a2 ( x , y , z ) / deltah
zt ( k ) = exp ( - x ** 2 - y ** 2 - z ** 2 ) * exp ( - x ) * ( - val ( element ) )
else
val ( element ) = - b2 ( x , y , z ) / deltah2 - a2 ( x , y , z ) / deltah
icol ( element ) = ( ix - 1 ) * ipoints * ipoints + ( iy - 2 ) * ipoints + ( iz )
irow ( element ) = glob_row
element = element + 1
endif
! term depending on ( x , y , z - 1 )
if ( iz == 1 ) then
val ( element ) = - b3 ( x , y , z ) / deltah2 - a3 ( x , y , z ) / deltah
zt ( k ) = exp ( - x ** 2 - y ** 2 - z ** 2 ) * exp ( - x ) * ( - val ( element ) )
else
val ( element ) = - b3 ( x , y , z ) / deltah2 - a3 ( x , y , z ) / deltah
icol ( element ) = ( ix - 1 ) * ipoints * ipoints + ( iy - 1 ) * ipoints + ( iz - 1 )
irow ( element ) = glob_row
element = element + 1
endif
! term depending on ( x , y , z )
val ( element ) = ( 2 * b1 ( x , y , z ) + 2 * b2 ( x , y , z ) + 2 * b3 ( x , y , z ) ) / deltah2 &
& + ( a1 ( x , y , z ) + a2 ( x , y , z ) + a3 ( x , y , z ) + a4 ( x , y , z ) ) / deltah
icol ( element ) = ( ix - 1 ) * ipoints * ipoints + ( iy - 1 ) * ipoints + ( iz )
irow ( element ) = glob_row
element = element + 1
! term depending on ( x , y , z + 1 )
if ( iz == ipoints ) then
val ( element ) = - b1 ( x , y , z ) / deltah2
zt ( k ) = exp ( - x ** 2 - y ** 2 - z ** 2 ) * exp ( - x ) * ( - val ( element ) )
else
val ( element ) = - b1 ( x , y , z ) / deltah2
icol ( element ) = ( ix - 1 ) * ipoints * ipoints + ( iy - 1 ) * ipoints + ( iz + 1 )
irow ( element ) = glob_row
element = element + 1
endif
! term depending on ( x , y + 1 , z )
if ( iy == ipoints ) then
val ( element ) = - b2 ( x , y , z ) / deltah2
zt ( k ) = exp ( - x ** 2 - y ** 2 - z ** 2 ) * exp ( - x ) * ( - val ( element ) )
else
val ( element ) = - b2 ( x , y , z ) / deltah2
icol ( element ) = ( ix - 1 ) * ipoints * ipoints + ( iy ) * ipoints + ( iz )
irow ( element ) = glob_row
element = element + 1
endif
! term depending on ( x + 1 , y , z )
if ( ix == ipoints ) then
val ( element ) = - b3 ( x , y , z ) / deltah2
zt ( k ) = exp ( - y ** 2 - z ** 2 ) * exp ( - x ) * ( - val ( element ) )
else
val ( element ) = - b3 ( x , y , z ) / deltah2
icol ( element ) = ( ix ) * ipoints * ipoints + ( iy - 1 ) * ipoints + ( iz )
irow ( element ) = glob_row
element = element + 1
endif
end do
call psb_spins ( element - 1 , irow , icol , val , a , desc_a , info )
if ( info / = psb_success_ ) exit
call psb_geins ( ib , myidx ( ii : ii + ib - 1 ) , zt ( 1 : ib ) , b , desc_a , info )
if ( info / = psb_success_ ) exit
zt ( : ) = 0.d0
call psb_geins ( ib , myidx ( ii : ii + ib - 1 ) , zt ( 1 : ib ) , xv , desc_a , info )
if ( info / = psb_success_ ) exit
end do
tgen = psb_wtime ( ) - t1
if ( info / = psb_success_ ) then
info = psb_err_from_subroutine_
call psb_errpush ( info , name )
go to 9999
end if
deallocate ( val , irow , icol )
call psb_barrier ( ictxt )
t1 = psb_wtime ( )
call psb_cdasb ( desc_a , info )
if ( info == psb_success_ ) &
& call psb_spasb ( a , desc_a , info , dupl = psb_dupl_err_ )
call psb_barrier ( ictxt )
if ( info / = psb_success_ ) then
info = psb_err_from_subroutine_
call psb_errpush ( info , name )
go to 9999
end if
call psb_geasb ( b , desc_a , info )
call psb_geasb ( xv , desc_a , info )
if ( info / = psb_success_ ) then
info = psb_err_from_subroutine_
call psb_errpush ( info , name )
go to 9999
end if
tasb = psb_wtime ( ) - t1
call psb_barrier ( ictxt )
ttot = psb_wtime ( ) - t0
call psb_amx ( ictxt , talc )
call psb_amx ( ictxt , tgen )
call psb_amx ( ictxt , tasb )
call psb_amx ( ictxt , ttot )
if ( iam == psb_root_ ) then
write ( * , '("The matrix has been generated and assembled in ",a3," format.")' ) &
& a % get_fmt ( )
write ( * , '("-allocation time : ",es12.5)' ) talc
write ( * , '("-coeff. gen. time : ",es12.5)' ) tgen
write ( * , '("-assembly time : ",es12.5)' ) tasb
write ( * , '("-total time : ",es12.5)' ) ttot
end if
call psb_erractionrestore ( err_act )
return
9999 continue
call psb_erractionrestore ( err_act )
if ( err_act == psb_act_abort_ ) then
call psb_error ( ictxt )
return
end if
return
end subroutine create_matrix
end program mld_dexample_1lev
!
! functions parametrizing the differential equation
!
function a1 ( x , y , z )
function b1 ( x , y , z )
use psb_base_mod , only : psb_dpk_
real ( psb_dpk_ ) :: a1
real ( psb_dpk_ ) :: x , y , z
! a1 = 1.d0
a1 = 0.d0
end function a1
function a2 ( x , y , z )
real ( psb_dpk_ ) :: b1
real ( psb_dpk_ ) , intent ( in ) :: x , y , z
b1 = 1.d0 / sqrt ( 3.d0 )
end function b1
function b2 ( x , y , z )
use psb_base_mod , only : psb_dpk_
real ( psb_dpk_ ) :: a2
real ( psb_dpk_ ) :: x , y , z
! a2 = 2.d1 * y
a2 = 0.d0
end function a2
function a3 ( x , y , z )
real ( psb_dpk_ ) :: b2
real ( psb_dpk_ ) , intent ( in ) :: x , y , z
b2 = 1.d0 / sqrt ( 3.d0 )
end function b2
function b3 ( x , y , z )
use psb_base_mod , only : psb_dpk_
real ( psb_dpk_ ) :: a3
real ( psb_dpk_ ) :: x , y , z
! a3 = 1.d0
a3 = 0.d0
end function a3
function a4 ( x , y , z )
real ( psb_dpk_ ) :: b3
real ( psb_dpk_ ) , intent ( in ) :: x , y , z
b3 = 1.d0 / sqrt ( 3.d0 )
end function b3
function c ( x , y , z )
use psb_base_mod , only : psb_dpk_
real ( psb_dpk_ ) :: a4
real ( psb_dpk_ ) :: x , y , z
! a4 = 1.d0
a4 = 0.d0
end function a4
function b1 ( x , y , z )
real ( psb_dpk_ ) :: c
real ( psb_dpk_ ) , intent ( in ) :: x , y , z
c = 0.d0
end function c
function a1 ( x , y , z )
use psb_base_mod , only : psb_dpk_
real ( psb_dpk_ ) :: b 1
real ( psb_dpk_ ) :: x , y , z
b1 = 1.d 0
end function b 1
function b 2( x , y , z )
real ( psb_dpk_ ) :: a1
real ( psb_dpk_ ) , intent ( in ) :: x , y , z
a1 = 1.d0 / 80
end function a1
function a2 ( x , y , z )
use psb_base_mod , only : psb_dpk_
real ( psb_dpk_ ) :: b 2
real ( psb_dpk_ ) :: x , y , z
b2 = 1.d 0
end function b 2
function b 3( x , y , z )
real ( psb_dpk_ ) :: a2
real ( psb_dpk_ ) , intent ( in ) :: x , y , z
a2 = 1.d0 / 80
end function a2
function a3 ( x , y , z )
use psb_base_mod , only : psb_dpk_
real ( psb_dpk_ ) :: b3
real ( psb_dpk_ ) :: x , y , z
b3 = 1.d0
end function b3
real ( psb_dpk_ ) :: a3
real ( psb_dpk_ ) , intent ( in ) :: x , y , z
a3 = 1.d0 / 80
end function a3
function g ( x , y , z )
use psb_base_mod , only : psb_dpk_ , done
real ( psb_dpk_ ) :: g
real ( psb_dpk_ ) , intent ( in ) :: x , y , z
g = dzero
if ( x == done ) then
g = done
else if ( x == dzero ) then
g = exp ( y ** 2 - z ** 2 )
end if
end function g
end program mld_dexample_1lev