You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
amg4psblas/mlprec/mld_dsp_renum.f90

388 lines
12 KiB
Fortran

!!$
!!$
!!$ MLD2P4 version 2.0
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
!!$ based on PSBLAS (Parallel Sparse BLAS version 3.0)
!!$
!!$ (C) Copyright 2008,2009,2010
!!$
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari CNRS-IRIT, Toulouse
!!$ Pasqua D'Ambra ICAR-CNR, Naples
!!$ Daniela di Serafino Second University of Naples
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: mld_dsp_renum.f90
!
! Subroutine: mld_dsp_renum
! Version: real
! Contains: gps_reduction
!
! This routine reorders the rows and the columns of the local part of a sparse
! distributed matrix, according to one of the following criteria:
! 1. the numbering of the global column indices,
! 2. the Gibbs-Poole-Stockmeyer (GPS) band reduction algorithm.
! NOTE: the GPS algorithm is disabled for the time being (see mld_prec_type.f90).
!
! The matrix to be reordered is stored into a and blck, as specified in the
! description of the arguments below.
!
! If required by the user (p%iprcparm(mld_sub_ren_) /= 0), the routine is
! used by mld_fact_bld in building the block-Jacobi and Additive Schwarz
! 'base preconditioners' corresponding to any level of a multilevel
! preconditioner.
!
!
! Arguments:
! a - type(psb_dspmat_type), input.
! The sparse matrix structure containing the 'original' local
! part of the matrix to be reordered, i.e. the rows of the matrix
! held by the calling process according to the initial data
! distribution.
! blck - type(psb_dspmat_type), input.
! The sparse matrix structure containing the remote rows of the
! matrix to be reordered, that have been retrieved by mld_as_bld
! to build an Additive Schwarz base preconditioner with overlap
! greater than 0.If the overlap is 0, then blck does not contain
! any row.
! p - type(mld_dbaseprec_type), input/output.
! The base preconditioner data structure containing the local
! part of the base preconditioner to be built. In input it
! contains information on the type of reordering to be applied
! and on the matrix to be reordered. In output it contains
! information on the reordering applied.
! atmp - type(psb_dspmat_type), output.
! The sparse matrix structure containing the whole local reordered
! matrix.
! info - integer, output.
! Error code.
!
subroutine mld_dsp_renum(a,blck,p,atmp,info)
use psb_sparse_mod
use mld_inner_mod, mld_protect_name => mld_dsp_renum
implicit none
! Arguments
type(psb_d_sparse_mat), intent(in) :: a,blck
type(psb_d_sparse_mat), intent(out) :: atmp
type(mld_dbaseprec_type), intent(inout) :: p
integer, intent(out) :: info
! Local variables
character(len=20) :: name, ch_err
integer :: nztota, nztotb, nztmp, nzt2, nnr, i,k, ma, mb
integer, allocatable :: itmp(:), itmp2(:)
integer :: ictxt,np,me, err_act
type(psb_d_coo_sparse_mat) :: cootmp, cootmp2
type(psb_d_csr_sparse_mat) :: csrtmp
real(psb_dpk_) :: t3,t4
if (psb_get_errstatus().ne.0) return
info=psb_success_
name='mld_dsp_renum'
call psb_erractionsave(err_act)
ictxt=psb_cd_get_context(p%desc_data)
call psb_info(ictxt, me, np)
!
! NOTE: the matrix to be reordered is converted into the COO format.
! If necessary it is converted from the COO to the CSR format.
! The output matrix is in COO format.
!
!
! Convert a into the COO format and extend it up to a%m+blck%m rows
! by adding null rows. The converted extended matrix is stored in atmp.
!
nztota=a%get_nzeros()
nztotb=blck%get_nzeros()
ma = a%get_nrows()
mb = blck%get_nrows()
if (p%iprcparm(mld_sub_ren_) == mld_renum_glb_) then
!
! Remember: we have switched IA1=COLS and IA2=ROWS.
! Now identify the set of distinct local column indices.
!
nnr = psb_cd_get_local_rows(p%desc_data)
allocate(p%perm(nnr),p%invperm(nnr),itmp2(nnr),stat=info)
if (info /= psb_success_) then
call psb_errpush(psb_err_from_subroutine_,name,a_err='Allocate')
goto 9999
end if
do i=1, nnr
itmp2(i) = i
end do
call psb_loc_to_glob(itmp2(1:nnr),p%desc_data,info,iact='I')
!
! Compute reordering. We want new(i) = old(perm(i)).
!
call psb_msort(itmp2(1:nnr),ix=p%perm)
!
! Compute the inverse of the permutation stored in perm
!
do k=1, nnr
p%invperm(p%perm(k)) = k
enddo
t3 = psb_wtime()
else if (p%iprcparm(mld_sub_ren_) == mld_renum_gps_) then
!
! This is a renumbering with Gibbs-Poole-Stockmeyer
! band reduction. Switched off for now. To be fixed,
! gps_reduction should get p%perm.
!
!
! Convert atmp into the CSR format
!
call a%cscnv(atmp,info,type='coo',dupl=psb_dupl_add_)
call psb_rwextd(ma+mb,atmp,info,blck)
call atmp%mv_to(csrtmp)
nztmp = csrtmp%get_nzeros()
!
! Realloc the permutation arrays
!
call psb_realloc(csrtmp%get_nrows(),p%perm,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_realloc'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_realloc(csrtmp%get_nrows(),p%invperm,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_realloc'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
allocate(itmp(max(8,csrtmp%get_nrows()+2,nztmp+2)),stat=info)
if (info /= psb_success_) then
call psb_errpush(psb_err_from_subroutine_,name,a_err='Allocate')
goto 9999
end if
itmp(1:8) = 0
!
! Renumber rows and columns according to the GPS algorithm
!
call gps_reduction(csrtmp%get_nrows(),csrtmp%irp,csrtmp%ja,p%perm,p%invperm,info)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='gps_reduction'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
!
! Compute the inverse permutation
!
do k=1, csrtmp%get_nrows()
p%invperm(p%perm(k)) = k
enddo
t3 = psb_wtime()
end if
!
! Rebuild atmp with the new numbering (COO format)
!
call a%cp_to(cootmp)
nztmp=cootmp%get_nzeros()
do i=1,nztmp
cootmp%ia(i) = p%perm(cootmp%ia(i))
cootmp%ja(i) = p%invperm(cootmp%ja(i))
end do
call blck%cp_to(cootmp2)
nzt2 = cootmp2%get_nzeros()
call psb_ensure_size(nztmp+nzt2,cootmp%ia,info)
call psb_ensure_size(nztmp+nzt2,cootmp%ja,info)
call psb_ensure_size(nztmp+nzt2,cootmp%val,info)
do i=1,nzt2
cootmp%ia(nztmp+i) = p%perm(cootmp2%ia(i))
cootmp%ja(nztmp+i) = p%invperm(cootmp2%ja(i))
cootmp%val(nztmp+i) = (cootmp2%val(i))
end do
call cootmp2%free()
call cootmp%set_nzeros(nztmp+nzt2)
call cootmp%set_dupl(psb_dupl_add_)
call cootmp%fix(info)
call atmp%mv_from(cootmp)
if (info /= psb_success_) then
call psb_errpush(psb_err_from_subroutine_,name,a_err='psb_fixcoo')
goto 9999
end if
t4 = psb_wtime()
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act.eq.psb_act_abort_) then
call psb_error()
return
end if
return
contains
!
! Subroutine: gps_reduction
! Note: internal subroutine of mld_dsp_renum
!
! Compute a renumbering of the row and column indices of a sparse matrix
! according to the Gibbs-Poole-Stockmeyer band reduction algorithm. The
! matrix is stored in CSR format.
!
! This routine has been obtained by adapting ACM TOMS Algorithm 582.
!
!
! Arguments:
! m - integer, ...
! The number of rows of the matrix to which the renumbering
! is applied.
! ia - integer, dimension(:), ...
! The indices identifying the first nonzero entry of each row
! of the matrix, according to the CSR storage format.
! ja - integer, dimension(:), ...
! The column indices of the nonzero entries of the matrix,
! according to the CSR storage format.
! perm - integer, dimension(:), ...
! The row/column index permutation corresponding to the
! renumbering.
! iperm - integer, dimension(:),...
! The inverse of the row/column permutation stored in perm.
! info - integer, output.
! Error code
!
subroutine gps_reduction(m,ia,ja,perm,iperm,info)
! Arguments
integer :: m
integer,dimension(:) :: ia,ja,perm,iperm
integer, intent(out) :: info
! Local variables
integer :: i,j,dgConn,Npnt
integer :: n,idpth,ideg,ibw2,ipf2
integer,dimension(:,:),allocatable::NDstk
integer,dimension(:),allocatable::iOld,renum,ndeg,lvl,lvls1,lvls2,ccstor
character(len=20) :: name
if(psb_get_errstatus().ne.0) return
info=psb_success_
name='gps_reduction'
call psb_erractionsave(err_act)
! Compute the maximum connectivity degree
npnt = m
dgConn=0
do i=1,m
dgconn = max(dgconn,(ia(i+1)-ia(i)))
enddo
! The maximum connectivity value is dgConn
n=Npnt ! Max number of rows
iDeg=dgConn ! Max connectivity
! iDpth= ! Number of level (initialization not needed)
allocate(NDstk(Npnt,dgConn),stat=info)
if (info /= psb_success_) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
allocate(iOld(Npnt),renum(Npnt+1),ndeg(Npnt),lvl(Npnt),lvls1(Npnt),&
&lvls2(Npnt),ccstor(Npnt),stat=info)
if (info /= psb_success_) then
info=psb_err_alloc_dealloc_
call psb_errpush(info,name)
goto 9999
endif
! Prepare the matrix graph
Ndstk(:,:)=0
do i=1,Npnt
k=0
do j = ia(i),ia(i+1) - 1
if ((1<=ja(j)).and.( ja( j ) /= i ).and.(ja(j)<=npnt)) then
k = k+1
Ndstk(i,k)=ja(j)
endif
enddo
ndeg(i)=k
enddo
! Numbering
do i=1,Npnt
iOld(i)=i
enddo
! Call gps_reduce
call psb_gps_reduce(Ndstk,Npnt,iOld,renum,ndeg,lvl,lvls1, lvls2,ccstor,&
& ibw2,ipf2,n,idpth,ideg)
! Build permutation vector
perm(1:Npnt)=renum(1:Npnt)
!Build inverse permutation vector
do i=1,Npnt
iperm(perm(i))=i
enddo
! Deallocate memory
deallocate(NDstk,iOld,renum,ndeg,lvl,lvls1,lvls2,ccstor)
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act.eq.psb_act_abort_) then
call psb_error()
return
end if
return
end subroutine gps_reduction
end subroutine mld_dsp_renum