Working parallel (QR_fact serial)

psblas-bgmres
gabrielequatrana 12 months ago
parent d10631530f
commit 676652fcff

@ -45,7 +45,7 @@ module psb_d_psblas_mod
integer(psb_ipk_), intent(out) :: info
logical, intent(in), optional :: global
end function psb_ddot_vect
function psb_ddot_multivect_col_v(x, y, desc_a,info,global) result(res)
function psb_ddot_multivect(x, y, desc_a,info,global) result(res)
import :: psb_desc_type, psb_dpk_, psb_ipk_, &
& psb_d_multivect_type, psb_dspmat_type
real(psb_dpk_), allocatable :: res(:,:)
@ -53,17 +53,7 @@ module psb_d_psblas_mod
type(psb_desc_type), intent(in) :: desc_a
integer(psb_ipk_), intent(out) :: info
logical, intent(in), optional :: global
end function psb_ddot_multivect_col_v
function psb_ddot_multivect_row_a(x, y, desc_a,info,global) result(res)
import :: psb_desc_type, psb_dpk_, psb_ipk_, &
& psb_d_multivect_type, psb_dspmat_type
real(psb_dpk_), allocatable :: res(:,:)
type(psb_d_multivect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: y(:,:)
type(psb_desc_type), intent(in) :: desc_a
integer(psb_ipk_), intent(out) :: info
logical, intent(in), optional :: global
end function psb_ddot_multivect_row_a
end function psb_ddot_multivect
function psb_ddotv(x, y, desc_a,info,global)
import :: psb_desc_type, psb_dpk_, psb_ipk_, &
& psb_d_vect_type, psb_dspmat_type
@ -107,6 +97,30 @@ module psb_d_psblas_mod
end subroutine psb_dmdots
end interface
interface psb_geprod
function psb_dprod_multivect(x,y,desc_a,info,trans,global) result(res)
import :: psb_desc_type, psb_dpk_, psb_ipk_, &
& psb_d_multivect_type, psb_dspmat_type
real(psb_dpk_), allocatable :: res(:,:)
type(psb_d_multivect_type), intent(inout) :: x, y
type(psb_desc_type), intent(in) :: desc_a
integer(psb_ipk_), intent(out) :: info
logical, intent(in), optional :: trans
logical, intent(in), optional :: global
end function psb_dprod_multivect
function psb_dprod_multivect_a(x,y,desc_a,info,trans,global) result(res)
import :: psb_desc_type, psb_dpk_, psb_ipk_, &
& psb_d_multivect_type, psb_dspmat_type
real(psb_dpk_), allocatable :: res(:,:)
type(psb_d_multivect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: y(:,:)
type(psb_desc_type), intent(in) :: desc_a
integer(psb_ipk_), intent(out) :: info
logical, intent(in), optional :: trans
logical, intent(in), optional :: global
end function psb_dprod_multivect_a
end interface
interface psb_geaxpby
subroutine psb_daxpby_vect(alpha, x, beta, y,&
& desc_a, info)

@ -2246,14 +2246,14 @@ module psb_d_base_multivect_mod
procedure, pass(x) :: set_vect => d_base_mlv_set_vect
generic, public :: set => set_vect, set_scal
!
! TODO Dot product (col-by-col and row-by-col) and AXPBY
!
procedure, pass(x) :: dot_col_v => d_base_mlv_dot_col_v
procedure, pass(x) :: dot_col_a => d_base_mlv_dot_col_a
generic, public :: dot_col => dot_col_v, dot_col_a
procedure, pass(x) :: dot_row_v => d_base_mlv_dot_row_v
procedure, pass(x) :: dot_row_a => d_base_mlv_dot_row_a
generic, public :: dot_row => dot_row_v, dot_row_a
! Product, dot-product (col-by-col) and AXPBY
!
procedure, pass(x) :: prod_v => d_base_mlv_prod_v
procedure, pass(x) :: prod_a => d_base_mlv_prod_a
generic, public :: prod => prod_v, prod_a
procedure, pass(x) :: dot_v => d_base_mlv_dot_v
procedure, pass(x) :: dot_a => d_base_mlv_dot_a
generic, public :: dot => dot_v, dot_a
procedure, pass(y) :: axpby_v => d_base_mlv_axpby_v
procedure, pass(y) :: axpby_a => d_base_mlv_axpby_a
generic, public :: axpby => axpby_v, axpby_a
@ -2812,92 +2812,103 @@ contains
end subroutine d_base_mlv_set_vect
! TODO
! Col Dot products
!
! Multivectors product
!
!
!> Function base_mlv_dot_col_v
!! \memberof psb_d_base_multivect_type
!! \brief Col-by-col mult using dot product by a mlv
!! \brief Product by a mlv
!! \param nr Number of rows to be considered
!! \param y The other (base_mlv_vect) to be multiplied by
!! \param trans If true, x is transposed
!! \param res Result vector
!!
function d_base_mlv_dot_col_v(nr,x,y) result(res)
function d_base_mlv_prod_v(nr,x,y,trans) result(res)
implicit none
class(psb_d_base_multivect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: nr
logical, optional, intent(in) :: trans
real(psb_dpk_), allocatable :: res(:,:)
real(psb_dpk_), external :: ddot
integer(psb_ipk_) :: i, j, n_x, n_y
external :: dgemm
integer(psb_ipk_) :: x_n, y_n, lda, ldb
if (x%is_dev()) call x%sync()
!
! Note: this is the base implementation.
! When we get here, we are sure that X is of
! TYPE psb_d_base_mlv_vect (or its class does not care).
! If Y is not, throw the burden on it, implicitly
! calling dot_a
!
select type(yy => y)
type is (psb_d_base_multivect_type)
if (y%is_dev()) call y%sync()
n_x = psb_size(x%v,2_psb_ipk_)
n_y = psb_size(y%v,2_psb_ipk_)
allocate(res(n_x,n_y))
do i=1,n_x
do j=1,n_y
res(i,j) = ddot(nr,x%v(1:nr,i),1,y%v(1:nr,j),1)
end do
end do
x_n = x%get_ncols()
y_n = y%get_ncols()
lda = x%get_nrows()
if (trans) then
allocate(res(x_n,y_n))
res = dzero
ldb = y%get_nrows()
call dgemm('T','N',x_n,y_n,nr,done,x%v,lda,y%v,ldb,dzero,res,x_n)
else
allocate(res(x%get_nrows(),y_n))
res = dzero
ldb = y_n
call dgemm('N','N',nr,y_n,x_n,done,x%v,lda,y%v,ldb,dzero,res,lda)
end if
class default
res = x%dot_col(nr,y%v)
res = x%prod(nr,y%v,trans)
end select
end function d_base_mlv_dot_col_v
end function d_base_mlv_prod_v
!
! Base workhorse is good old BLAS1
! Multivectors product base
!
!
!> Function base_mlv_dot_col_a
!! \memberof psb_d_base_multivect_type
!! \brief Col-by-col mult using dot product by a normal array
!! \brief Product by an array(:,:)
!! \param nr Number of rows to be considered
!! \param y(:,:) The array to be multiplied by
!! \param y The other array(:,:) to be multiplied by
!! \param trans If true, x is transposed
!! \param res Result vector
!!
function d_base_mlv_dot_col_a(nr,x,y) result(res)
function d_base_mlv_prod_a(nr,x,y,trans) result(res)
implicit none
class(psb_d_base_multivect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: y(:,:)
integer(psb_ipk_), intent(in) :: nr
logical, optional, intent(in) :: trans
real(psb_dpk_), allocatable :: res(:,:)
real(psb_dpk_), external :: ddot
integer(psb_ipk_) :: i, j, n_x, n_y
external :: dgemm
integer(psb_ipk_) :: x_n, y_n, lda, ldb
if (x%is_dev()) call x%sync()
n_x = psb_size(x%v,2_psb_ipk_)
n_y = size(y,2_psb_ipk_)
allocate(res(n_x,n_y))
do i=1,n_x
do j=1,n_y
res(i,j) = ddot(nr,x%v(1:nr,i),1,y(1:nr,j),1)
end do
end do
x_n = x%get_ncols()
y_n = size(y,dim=2)
lda = x%get_nrows()
if (trans) then
allocate(res(x_n,y_n))
res = dzero
ldb = size(y,dim=1)
call dgemm('T','N',x_n,y_n,nr,done,x%v,lda,y,ldb,dzero,res,x_n)
else
allocate(res(x%get_nrows(),y_n))
res = dzero
ldb = x_n
call dgemm('N','N',nr,y_n,x_n,done,x%v,lda,y,ldb,dzero,res,lda)
end if
end function d_base_mlv_dot_col_a
end function d_base_mlv_prod_a
!
! Row Dot products
! Dot products
!
!
!> Function base_mlv_dot_col_v
!> Function base_mlv_dot_v
!! \memberof psb_d_base_multivect_type
!! \brief Row-by-col mult using dot product by mlv
!! \brief Dot product by another base_mlv_vector
!! \param nr Number of rows to be considered
!! \param y The other (base_mlv_vect) to be multiplied by
!! \param res Result vector
!! \param res Result matrix
!!
function d_base_mlv_dot_row_v(nr,x,y) result(res)
function d_base_mlv_dot_v(nr,x,y) result(res)
implicit none
class(psb_d_base_multivect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: nr
@ -2918,32 +2929,33 @@ contains
if (y%is_dev()) call y%sync()
n_x = psb_size(x%v,2_psb_ipk_)
n_y = psb_size(y%v,2_psb_ipk_)
allocate(res(nr,n_y))
do i=1,nr
allocate(res(n_x,n_y))
do i=1,n_x
do j=1,n_y
res(i,j) = ddot(n_x,x%v(i,:),1,y%v(:,j),1)
res(i,j) = ddot(nr,x%v(1:nr,i),1,y%v(1:nr,j),1)
end do
end do
class default
res = x%dot_row(nr,y%v)
res = x%dot_col(nr,y%v)
end select
end function d_base_mlv_dot_row_v
end function d_base_mlv_dot_v
!
! Base workhorse is good old BLAS1
!
!
!> Function base_mlv_dot_row_a
!> Function base_mlv_dot_a
!! \memberof psb_d_base_multivect_type
!! \brief Row-by-col mult using dot product by a normal array
!! \brief Dot product by a normal array
!! \param nr Number of rows to be considered
!! \param y(:,:) The array to be multiplied by
!! \param res Result vector
!! \param res Result matrix
!!
function d_base_mlv_dot_row_a(nr,x,y) result(res)
function d_base_mlv_dot_a(nr,x,y) result(res)
class(psb_d_base_multivect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: y(:,:)
integer(psb_ipk_), intent(in) :: nr
real(psb_dpk_), allocatable :: res(:,:)
real(psb_dpk_), external :: ddot
integer(psb_ipk_) :: i, j, n_x, n_y
@ -2951,15 +2963,14 @@ contains
if (x%is_dev()) call x%sync()
n_x = psb_size(x%v,2_psb_ipk_)
n_y = size(y,2_psb_ipk_)
allocate(res(psb_size(x%v,1_psb_ipk_),n_y))
do i=1,nr
allocate(res(n_x,n_y))
do i=1,n_x
do j=1,n_y
res(i,j) = ddot(n_x,x%v(i,:),1,y(:,j),1)
res(i,j) = ddot(nr,x%v(1:nr,i),1,y(1:nr,j),1)
end do
end do
end function d_base_mlv_dot_row_a
end function d_base_mlv_dot_a
!
! AXPBY is invoked via Y, hence the structure below.
!

@ -1387,11 +1387,14 @@ module psb_d_multivect_mod
procedure, pass(x) :: set_vect => d_vect_set_vect
generic, public :: set => set_vect, set_scal
!
! Dot product and AXPBY
! Produc, dot-product and AXPBY
!
procedure, pass(x) :: dot_col_v => d_vect_dot_col_v
procedure, pass(x) :: dot_col_a => d_vect_dot_col_a
generic, public :: dot_col => dot_col_v, dot_col_a
procedure, pass(x) :: prod_v => d_vect_prod_v
procedure, pass(x) :: prod_a => d_vect_prod_a
generic, public :: prod => prod_v, prod_a
procedure, pass(x) :: dot_v => d_vect_dot_v
procedure, pass(x) :: dot_a => d_vect_dot_a
generic, public :: dot => dot_v, dot_a
procedure, pass(x) :: dot_row_v => d_vect_dot_row_v
procedure, pass(x) :: dot_row_a => d_vect_dot_row_a
generic, public :: dot_row => dot_row_v, dot_row_a
@ -1858,41 +1861,43 @@ contains
call move_alloc(tmp,x%v)
end subroutine d_vect_cnv
function d_vect_dot_col_v(nr,x,y) result(res)
function d_vect_prod_v(nr,x,y,trans) result(res)
implicit none
class(psb_d_multivect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: nr
logical, optional, intent(in) :: trans
real(psb_dpk_), allocatable :: res(:,:)
if (allocated(x%v).and.allocated(y%v)) &
& res = x%v%dot_col(nr,y%v)
& res = x%v%prod(nr,y%v,trans)
end function d_vect_dot_col_v
end function d_vect_prod_v
function d_vect_dot_col_a(nr,x,y) result(res)
function d_vect_prod_a(nr,x,y,trans) result(res)
implicit none
class(psb_d_multivect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: y(:,:)
integer(psb_ipk_), intent(in) :: nr
logical, optional, intent(in) :: trans
real(psb_dpk_), allocatable :: res(:,:)
if (allocated(x%v)) &
& res = x%v%dot_col(nr,y)
& res = x%v%prod(nr,y,trans)
end function d_vect_dot_col_a
end function d_vect_prod_a
function d_vect_dot_row_v(nr,x,y) result(res)
function d_vect_dot_v(nr,x,y) result(res)
implicit none
class(psb_d_multivect_type), intent(inout) :: x, y
integer(psb_ipk_), intent(in) :: nr
real(psb_dpk_), allocatable :: res(:,:)
if (allocated(x%v).and.allocated(y%v)) &
& res = x%v%dot_row(nr,y%v)
& res = x%v%dot(nr,y%v)
end function d_vect_dot_row_v
end function d_vect_dot_v
function d_vect_dot_row_a(nr,x,y) result(res)
function d_vect_dot_a(nr,x,y) result(res)
implicit none
class(psb_d_multivect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: y(:,:)
@ -1900,9 +1905,9 @@ contains
real(psb_dpk_), allocatable :: res(:,:)
if (allocated(x%v)) &
& res = x%v%dot_row(nr,y)
& res = x%v%dot(nr,y)
end function d_vect_dot_row_a
end function d_vect_dot_a
subroutine d_vect_axpby_v(m,alpha, x, beta, y, info)
use psi_serial_mod

@ -2,7 +2,7 @@ include ../../Make.inc
#FCOPT=-O2
OBJS= psb_ddot.o psb_damax.o psb_dasum.o psb_daxpby.o psb_dqrfact.o\
psb_dnrm2.o psb_dnrmi.o psb_dspmm.o psb_dspsm.o\
psb_dprod.o psb_dnrm2.o psb_dnrmi.o psb_dspmm.o psb_dspsm.o\
psb_sspnrm1.o psb_dspnrm1.o psb_cspnrm1.o psb_zspnrm1.o \
psb_zamax.o psb_zasum.o psb_zaxpby.o psb_zdot.o \
psb_znrm2.o psb_znrmi.o psb_zspmm.o psb_zspsm.o\

@ -158,7 +158,7 @@ function psb_ddot_vect(x, y, desc_a,info,global) result(res)
end function psb_ddot_vect
!
! Function: psb_ddot_multivect_col_v
! Function: psb_ddot_multivect
! psb_ddot computes the col-by-col dot product of two distributed vectors,
!
! dot := ( X )**C * ( Y )
@ -175,14 +175,14 @@ end function psb_ddot_vect
! they are declared INOUT because of the sync() methods.
!
!
function psb_ddot_multivect_col_v(x, y, desc_a,info,global) result(res)
function psb_ddot_multivect(x, y, desc_a,info,global) result(res)
use psb_desc_mod
use psb_d_base_mat_mod
use psb_check_mod
use psb_error_mod
use psb_penv_mod
use psb_d_vect_mod
use psb_d_psblas_mod, psb_protect_name => psb_ddot_multivect_col_v
use psb_d_psblas_mod, psb_protect_name => psb_ddot_multivect
implicit none
real(psb_dpk_), allocatable :: res(:,:)
type(psb_d_multivect_type), intent(inout) :: x, y
@ -193,7 +193,7 @@ function psb_ddot_multivect_col_v(x, y, desc_a,info,global) result(res)
! locals
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: np, me, idx, ndm,&
& err_act, iix, jjx, iiy, jjy, i, j, k, nr
& err_act, iix, jjx, iiy, jjy, i, j, nr
integer(psb_lpk_) :: ix, ijx, iy, ijy, m
logical :: global_
character(len=20) :: name, ch_err
@ -235,7 +235,6 @@ function psb_ddot_multivect_col_v(x, y, desc_a,info,global) result(res)
iy = ione
ijy = ione
! TODO
m = desc_a%get_global_rows()
! check vector correctness
@ -268,136 +267,16 @@ function psb_ddot_multivect_col_v(x, y, desc_a,info,global) result(res)
do i=1,size(desc_a%ovrlap_elem,1)
idx = desc_a%ovrlap_elem(i,1)
ndm = desc_a%ovrlap_elem(i,2)
res(idx,j) = res(idx,j) - (real(ndm-1)/real(ndm))*(x%v%v(idx,j)*y%v%v(idx,j))
res(j,:) = res(j,:) - (real(ndm-1)/real(ndm))*(x%v%v(idx,:)*y%v%v(idx,:))
end do
end do
end if
else
allocate(res(size(x%v%v,2_psb_ipk_),size(y%v%v,2_psb_ipk_)))
allocate(res(x%get_ncols(),y%get_ncols()))
res = dzero
end if
! TODO compute global sum
if (global_) call psb_sum(ctxt, res)
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ctxt,err_act)
return
end function psb_ddot_multivect_col_v
!
! Function: psb_ddot_multivect_row_a
! psb_ddot computes the row-by-col dot product of two distributed vectors,
!
! dot := ( X )**C * ( Y )
!
!
! Arguments:
! x - type(psb_d_multivect_type) The input vector containing the entries of sub( X ).
! y - real(psb_dpk_)(:,:) The input vector containing the entries of sub( Y ).
! desc_a - type(psb_desc_type). The communication descriptor.
! info - integer. Return code
! global - logical(optional) Whether to perform the global sum, default: .true.
!
! Note: from a functional point of view, X and Y are input, but here
! they are declared INOUT because of the sync() methods.
!
!
function psb_ddot_multivect_row_a(x, y, desc_a, info, global) result(res)
use psb_desc_mod
use psb_d_base_mat_mod
use psb_check_mod
use psb_error_mod
use psb_penv_mod
use psb_d_vect_mod
use psb_d_psblas_mod, psb_protect_name => psb_ddot_multivect_row_a
implicit none
real(psb_dpk_), allocatable :: res(:,:)
type(psb_d_multivect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: y(:,:)
type(psb_desc_type), intent(in) :: desc_a
integer(psb_ipk_), intent(out) :: info
logical, intent(in), optional :: global
! locals
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: np, me, idx, ndm,&
& err_act, iix, jjx, i, j, nr
integer(psb_lpk_) :: ix, ijx, iy, ijy, m
logical :: global_
character(len=20) :: name, ch_err
name='psb_ddot_multivect'
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_ ; goto 9999
end if
ctxt=desc_a%get_context()
call psb_info(ctxt, me, np)
if (np == -ione) then
info = psb_err_context_error_
call psb_errpush(info,name)
goto 9999
endif
if (.not.allocated(x%v)) then
info = psb_err_invalid_vect_state_
call psb_errpush(info,name)
goto 9999
endif
if (present(global)) then
global_ = global
else
global_ = .true.
end if
ix = ione
ijx = ione
m = desc_a%get_global_rows()
! check vector correctness
call psb_chkvect(m,x%get_ncols(),x%get_nrows(),ix,ijx,desc_a,info,iix,jjx)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_chkvect'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if (iix /= ione) then
info=psb_err_ix_n1_iy_n1_unsupported_
call psb_errpush(info,name)
goto 9999
end if
nr = desc_a%get_local_rows()
if(nr > 0) then
res = x%dot_row(nr,y)
! TODO adjust dot_local because overlapped elements are computed more than once
if (size(desc_a%ovrlap_elem,1)>0) then
if (x%v%is_dev()) call x%sync()
do j=1,x%get_ncols()
do i=1,size(desc_a%ovrlap_elem,1)
idx = desc_a%ovrlap_elem(i,1)
ndm = desc_a%ovrlap_elem(i,2)
res(idx,j) = res(idx,j) - (real(ndm-1)/real(ndm))*(x%v%v(idx,j)*y(idx,j))
end do
end do
end if
else
allocate(res(nr,size(y,2_psb_ipk_)))
res = dzero
end if
! TODO compute global sum
! compute global sum
if (global_) call psb_sum(ctxt, res)
call psb_erractionrestore(err_act)
@ -407,7 +286,7 @@ function psb_ddot_multivect_row_a(x, y, desc_a, info, global) result(res)
return
end function psb_ddot_multivect_row_a
end function psb_ddot_multivect
!
! Function: psb_ddot
! psb_ddot computes the dot product of two distributed vectors,

@ -473,7 +473,6 @@ function psb_dnrm2_multivect(x, desc_a, info,global) result(res)
res = dzero
end if
! TODO
if (global_) call psb_nrm2(ctxt,res)
call psb_erractionrestore(err_act)

@ -0,0 +1,298 @@
!
! Parallel Sparse BLAS version 3.5
! (C) Copyright 2006-2018
! Salvatore Filippone
! Alfredo Buttari
!
! Redistribution and use in source and binary forms, with or without
! modification, are permitted provided that the following conditions
! are met:
! 1. Redistributions of source code must retain the above copyright
! notice, this list of conditions and the following disclaimer.
! 2. Redistributions in binary form must reproduce the above copyright
! notice, this list of conditions, and the following disclaimer in the
! documentation and/or other materials provided with the distribution.
! 3. The name of the PSBLAS group or the names of its contributors may
! not be used to endorse or promote products derived from this
! software without specific written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
! ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
! TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
! PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
! BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
! CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
! SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
! INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
! CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
! ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
! POSSIBILITY OF SUCH DAMAGE.
!
!
! File: psb_dprod.f90
!
! Function: psb_dprod_multivect
! psb_dprod computes the product of two distributed multivectors,
!
! prod := ( X ) * ( Y ) or
! prod := ( X )**C * ( Y )
!
!
! Arguments:
! x - type(psb_d_multivect_type) The input vector containing the entries of sub( X ).
! y - type(psb_d_multivect_type) The input vector containing the entries of sub( Y ).
! desc_a - type(psb_desc_type). The communication descriptor.
! info - integer. Return code
! trans - logical(optional) Whether multivector X is transposed, default: .false.
! global - logical(optional) Whether to perform the global reduce, default: .true.
!
! Note: from a functional point of view, X and Y are input, but here
! they are declared INOUT because of the sync() methods.
!
!
function psb_dprod_multivect(x,y,desc_a,info,trans,global) result(res)
use psb_desc_mod
use psb_d_base_mat_mod
use psb_check_mod
use psb_error_mod
use psb_penv_mod
use psb_d_vect_mod
use psb_d_psblas_mod, psb_protect_name => psb_dprod_multivect
implicit none
real(psb_dpk_), allocatable :: res(:,:)
type(psb_d_multivect_type), intent(inout) :: x, y
type(psb_desc_type), intent(in) :: desc_a
integer(psb_ipk_), intent(out) :: info
logical, intent(in), optional :: trans
logical, intent(in), optional :: global
! locals
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: np, me, idx, ndm,&
& err_act, iix, jjx, iiy, jjy, i, j, nr
integer(psb_lpk_) :: ix, ijx, iy, ijy, m
logical :: global_, trans_
character(len=20) :: name, ch_err
name='psb_dprod_multivect'
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_ ; goto 9999
end if
ctxt=desc_a%get_context()
call psb_info(ctxt, me, np)
if (np == -ione) then
info = psb_err_context_error_
call psb_errpush(info,name)
goto 9999
endif
if (.not.allocated(x%v)) then
info = psb_err_invalid_vect_state_
call psb_errpush(info,name)
goto 9999
endif
if (.not.allocated(y%v)) then
info = psb_err_invalid_vect_state_
call psb_errpush(info,name)
goto 9999
endif
if (present(trans)) then
trans_ = trans
else
trans_ = .false.
end if
if (present(global)) then
global_ = global
else
global_ = .true.
end if
ix = ione
ijx = ione
iy = ione
ijy = ione
m = desc_a%get_global_rows()
! check vector correctness
call psb_chkvect(m,x%get_ncols(),x%get_nrows(),ix,ijx,desc_a,info,iix,jjx)
if (info == psb_success_) &
& call psb_chkvect(m,y%get_ncols(),y%get_nrows(),iy,ijy,desc_a,info,iiy,jjy)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_chkvect'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if ((iix /= ione).or.(iiy /= ione)) then
info=psb_err_ix_n1_iy_n1_unsupported_
call psb_errpush(info,name)
goto 9999
end if
nr = desc_a%get_local_rows()
if (nr > 0) then
res = x%prod(nr,y,trans_)
! TODO adjust dot_local because overlapped elements are computed more than once
if (size(desc_a%ovrlap_elem,1)>0) then
if (x%v%is_dev()) call x%sync()
if (y%v%is_dev()) call y%sync()
do j=1,x%get_ncols()
do i=1,size(desc_a%ovrlap_elem,1)
idx = desc_a%ovrlap_elem(i,1)
ndm = desc_a%ovrlap_elem(i,2)
res(j,:) = res(j,:) - (real(ndm-1)/real(ndm))*(x%v%v(idx,:)*y%v%v(idx,:))
end do
end do
end if
else
res = dzero
end if
! TODO forse è meglio global false di default
! compute global sum
if (global_) call psb_sum(ctxt, res)
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ctxt,err_act)
return
end function psb_dprod_multivect
!
! Function: psb_dprod_multivect_a
! psb_dprod computes the product of two distributed multivectors,
!
! prod := ( X ) * ( Y ) or
! prod := ( X )**C * ( Y )
!
!
! Arguments:
! x - type(psb_d_multivect_type) The input vector containing the entries of sub( X ).
! y - real(:,:) The input vector containing the entries of sub( Y ).
! desc_a - type(psb_desc_type). The communication descriptor.
! info - integer. Return code
! trans - logical(optional) Whether multivector X is transposed, default: .false.
! global - logical(optional) Whether to perform the global reduce, default: .true.
!
! Note: from a functional point of view, X and Y are input, but here
! they are declared INOUT because of the sync() methods.
!
!
function psb_dprod_multivect_a(x,y,desc_a,info,trans,global) result(res)
use psb_desc_mod
use psb_d_base_mat_mod
use psb_check_mod
use psb_error_mod
use psb_penv_mod
use psb_d_vect_mod
use psb_d_psblas_mod, psb_protect_name => psb_dprod_multivect_a
implicit none
real(psb_dpk_), allocatable :: res(:,:)
type(psb_d_multivect_type), intent(inout) :: x
real(psb_dpk_), intent(in) :: y(:,:)
type(psb_desc_type), intent(in) :: desc_a
integer(psb_ipk_), intent(out) :: info
logical, intent(in), optional :: trans
logical, intent(in), optional :: global
! locals
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: np, me, idx, ndm,&
& err_act, iix, jjx, iiy, jjy, i, j, nr
integer(psb_lpk_) :: ix, ijx, iy, ijy, m
logical :: global_, trans_
character(len=20) :: name, ch_err
name='psb_dprod_multivect'
info=psb_success_
call psb_erractionsave(err_act)
if (psb_errstatus_fatal()) then
info = psb_err_internal_error_ ; goto 9999
end if
ctxt=desc_a%get_context()
call psb_info(ctxt, me, np)
if (np == -ione) then
info = psb_err_context_error_
call psb_errpush(info,name)
goto 9999
endif
if (.not.allocated(x%v)) then
info = psb_err_invalid_vect_state_
call psb_errpush(info,name)
goto 9999
endif
if (present(trans)) then
trans_ = trans
else
trans_ = .false.
end if
if (present(global)) then
global_ = global
else
global_ = .true.
end if
ix = ione
ijx = ione
m = desc_a%get_global_rows()
! check vector correctness
call psb_chkvect(m,x%get_ncols(),x%get_nrows(),ix,ijx,desc_a,info,iix,jjx)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_chkvect'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
if ((iix /= ione)) then
info=psb_err_ix_n1_iy_n1_unsupported_
call psb_errpush(info,name)
goto 9999
end if
nr = desc_a%get_local_rows()
if (nr > 0) then
res = x%prod(nr,y,trans_)
! TODO adjust dot_local because overlapped elements are computed more than once
if (size(desc_a%ovrlap_elem,1)>0) then
if (x%v%is_dev()) call x%sync()
do j=1,x%get_ncols()
do i=1,size(desc_a%ovrlap_elem,1)
idx = desc_a%ovrlap_elem(i,1)
ndm = desc_a%ovrlap_elem(i,2)
res(j,:) = res(j,:) - (real(ndm-1)/real(ndm))*(x%v%v(idx,:)*y(idx,:))
end do
end do
end if
else
res = dzero
end if
! TODO
! compute global sum
if (global_) call psb_sum(ctxt, res)
call psb_erractionrestore(err_act)
return
9999 call psb_error_handler(ctxt,err_act)
return
end function psb_dprod_multivect_a

@ -20,9 +20,10 @@ function psb_dqrfact(x, desc_a, info) result(res)
! locals
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: np, me, err_act, iix, jjx
integer(psb_lpk_) :: ix, ijx, m
integer(psb_ipk_) :: np, me, err_act, iix, jjx, i
integer(psb_lpk_) :: ix, ijx, m, n
character(len=20) :: name, ch_err
real(psb_dpk_), allocatable :: temp(:,:)
name='psb_dgqrfact'
if (psb_errstatus_fatal()) return
@ -47,8 +48,9 @@ function psb_dqrfact(x, desc_a, info) result(res)
ijx = ione
m = desc_a%get_global_rows()
n = x%get_ncols()
call psb_chkvect(m,x%get_ncols(),x%get_nrows(),ix,ijx,desc_a,info,iix,jjx)
call psb_chkvect(m,n,x%get_nrows(),ix,ijx,desc_a,info,iix,jjx)
if(info /= psb_success_) then
info=psb_err_from_subroutine_
ch_err='psb_chkvect'
@ -61,11 +63,20 @@ function psb_dqrfact(x, desc_a, info) result(res)
call psb_errpush(info,name)
end if
! TODO serial?
if(desc_a%get_local_rows() > 0) then
call psb_gather(temp,x,desc_a,info,root=psb_root_)
if (me == psb_root_) then
call x%set(temp)
res = x%qr_fact(info)
call psb_bcast(ctxt,res)
else
allocate(res(n,n))
call psb_bcast(ctxt,res)
end if
temp = x%get_vect()
call psb_scatter(temp,x,desc_a,info,root=psb_root_)
call psb_erractionrestore(err_act)
return

@ -61,7 +61,7 @@ subroutine psb_dbgmres_multivect(a, prec, b, x, eps, desc_a, info, itmax, iter,
integer(psb_ipk_), Optional, Intent(out) :: iter
real(psb_dpk_), Optional, Intent(out) :: err
real(psb_dpk_), allocatable :: aux(:), h(:,:), beta(:,:), temp(:,:)
real(psb_dpk_), allocatable :: aux(:), h(:,:), beta(:,:), beta_e1(:,:)
type(psb_d_multivect_type), allocatable :: v(:)
type(psb_d_multivect_type) :: v_tot, w
@ -72,7 +72,7 @@ subroutine psb_dbgmres_multivect(a, prec, b, x, eps, desc_a, info, itmax, iter,
integer(psb_ipk_) :: litmax, naux, itrace_, n_row, n_col, nrhs, nrep
integer(psb_lpk_) :: mglob, n_add
integer(psb_ipk_) :: i, j, istop_, err_act, idx_i, idx_j, idx
integer(psb_ipk_) :: i, j, k, istop_, err_act, idx_i, idx_j, idx
integer(psb_ipk_) :: debug_level, debug_unit
type(psb_ctxt_type) :: ctxt
@ -165,14 +165,14 @@ subroutine psb_dbgmres_multivect(a, prec, b, x, eps, desc_a, info, itmax, iter,
goto 9999
end if
naux=4*n_col
naux = 4*n_col
nrhs = x%get_ncols()
allocate(aux(naux),h((nrep+1)*nrhs,nrep*nrhs),stat=info)
if (info == psb_success_) call psb_geall(v,desc_a,info,m=nrep+1,n=nrhs)
if (info == psb_success_) call psb_geall(v_tot,desc_a,info,n=(nrep+1)*nrhs)
if (info == psb_success_) call psb_geall(v_tot,desc_a,info,n=nrep*nrhs)
if (info == psb_success_) call psb_geall(w,desc_a,info,n=nrhs)
if (info == psb_success_) call psb_geasb(v,desc_a,info,mold=x%v,n=nrhs)
if (info == psb_success_) call psb_geasb(v_tot,desc_a,info,mold=x%v,n=(nrep+1)*nrhs)
if (info == psb_success_) call psb_geasb(v_tot,desc_a,info,mold=x%v,n=nrep*nrhs)
if (info == psb_success_) call psb_geasb(w,desc_a,info,mold=x%v,n=nrhs)
if (info /= psb_success_) then
info=psb_err_from_subroutine_non_
@ -208,7 +208,7 @@ subroutine psb_dbgmres_multivect(a, prec, b, x, eps, desc_a, info, itmax, iter,
! BGMRES algorithm
! TODO inserire timer operazioni tra mlv
! TODO QR fact seriale per ora
! STEP 1: Compute R(0) = B - A*X(0)
@ -228,7 +228,6 @@ subroutine psb_dbgmres_multivect(a, prec, b, x, eps, desc_a, info, itmax, iter,
goto 9999
end if
! TODO gather su root e poi scatter
! STEP 2: Compute QR_fact(R(0))
beta = psb_geqrfact(v(1),desc_a,info)
if (info /= psb_success_) then
@ -279,42 +278,32 @@ subroutine psb_dbgmres_multivect(a, prec, b, x, eps, desc_a, info, itmax, iter,
! STEP 5: Inner loop
inner: do i=1,j
write(*,*) 'PROC ', me, ' LOOOP 1', i
! Compute i index for H operations
idx_i = (i-1)*nrhs+1
! STEP 6: Compute H(i,j) = V(i)_T*W
h(idx_i:idx_i+n_add,idx_j:idx_j+n_add) = psb_gedot(v(i),w,desc_a,info)
h(idx_i:idx_i+n_add,idx_j:idx_j+n_add) = psb_geprod(v(i),w,desc_a,info,trans=.true.)
if (info /= psb_success_) then
info=psb_err_from_subroutine_non_
call psb_errpush(info,name)
goto 9999
end if
write(*,*) 'PROC ', me, ' LOOOP 2', i
! STEP 7: Compute W = W - V(i)*H(i,j)
temp = psb_gedot(v(i),h(idx_i:idx_i+n_add,idx_j:idx_j+n_add),desc_a,info)
!call psb_geaxpby(-done,psb_gedot(v(i),h(idx_i:idx_i+n_add,idx_j:idx_j+n_add),desc_a,info),done,w,desc_a,info)
write(*,*) 'PROC ', me, ' LOOOP 3', i
call psb_geaxpby(-done,temp,done,w,desc_a,info)
! TODO si blocca con NRHS grandi?
!temp = psb_geprod(v(i),h(idx_i:idx_i+n_add,idx_j:idx_j+n_add),desc_a,info,global=.false.)
call psb_geaxpby(-done,psb_geprod(v(i),h(idx_i:idx_i+n_add,idx_j:idx_j+n_add),desc_a,info,global=.false.),done,w,desc_a,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_non_
call psb_errpush(info,name)
goto 9999
end if
write(*,*) 'PROC ', me, ' LOOOP 4', i
end do inner
! STEP 8: Compute QR_fact(W)
!write(*,*) 'PROC ', me, ' BBBB ', j
! Store R in H(j+1,j)
h(idx_j+nrhs:idx_j+nrhs+n_add,idx_j:idx_j+n_add) = psb_geqrfact(w,desc_a,info)
if (info /= psb_success_) then
@ -331,8 +320,6 @@ subroutine psb_dbgmres_multivect(a, prec, b, x, eps, desc_a, info, itmax, iter,
goto 9999
end if
write(*,*) 'PROC ', me, ' AAAA'
end do outer
! STEP 9: Compute Y(m)
@ -343,15 +330,15 @@ subroutine psb_dbgmres_multivect(a, prec, b, x, eps, desc_a, info, itmax, iter,
goto 9999
end if
! TODO Va vene che ci siano altre righe perchè poi si passa localrows
! TODO V_tot comprende V(nrep+1)?
! STEP 10: Compute V = {V(1),...,V(m)}
do i=1,nrep+1
do i=1,nrep
idx = (i-1)*nrhs+1
v_tot%v%v(1:n_row,idx:idx+n_add) = v(i)%v%v(1:n_row,1:nrhs)
enddo
! STEP 11: X(m) = X(0) + V*Y(m)
call psb_geaxpby(done,psb_gedot(v_tot,h,desc_a,info),done,x,desc_a,info)
call psb_geaxpby(done,psb_geprod(v_tot,beta_e1,desc_a,info,global=.false.),done,x,desc_a,info)
if (info /= psb_success_) then
info=psb_err_from_subroutine_non_
call psb_errpush(info,name)
@ -389,7 +376,7 @@ contains
implicit none
integer(psb_ipk_) :: lwork
real(psb_dpk_), allocatable :: work(:), beta_e1(:,:)
real(psb_dpk_), allocatable :: work(:), beta_temp(:,:)
integer(psb_ipk_) :: m_h, n_h, mn
@ -401,14 +388,19 @@ contains
allocate(work(lwork))
! Compute E1*beta
allocate(beta_e1(m_h,nrhs))
beta_e1 = dzero
beta_e1(1:nrhs,1:nrhs) = beta
allocate(beta_temp(m_h,nrhs))
beta_temp = dzero
beta_temp(1:nrhs,1:nrhs) = beta
! Compute min Frobenius norm
call dgels('N',m_h,n_h,nrhs,h,m_h,beta_e1,m_h,work,lwork,info)
call dgels('N',m_h,n_h,nrhs,h,m_h,beta_temp,m_h,work,lwork,info)
! Set solution
allocate(beta_e1(n_h,nrhs))
beta_e1 = beta_temp(1:n_h,1:nrhs)
deallocate(work,beta_e1)
! Deallocate
deallocate(work,beta,beta_temp)
return

@ -26,6 +26,8 @@ program psb_dbf_sample
integer(psb_ipk_) :: m, nrhs
real(psb_dpk_) :: random_value
real(psb_dpk_), allocatable :: test(:,:)
! communications data structure
type(psb_desc_type) :: desc_a
type(psb_ctxt_type) :: ctxt
@ -128,9 +130,9 @@ program psb_dbf_sample
b_mv_glob => aux_b(:,:)
do i=1, m
do j=1, nrhs
!b_mv_glob(i,j) = done
call random_number(random_value)
b_mv_glob(i,j) = random_value
b_mv_glob(i,j) = done
!call random_number(random_value)
!b_mv_glob(i,j) = random_value
enddo
enddo
endif
@ -255,7 +257,6 @@ program psb_dbf_sample
write(psb_out_unit,'("Residual norm 2: ",es12.5)')resmx
write(psb_out_unit,'("Residual norm inf: ",es12.5)')resmxp
write(psb_out_unit,'(" ")')
! TODO
! do i=1,m
! write(psb_out_unit,993) i, x_mv_glob(i,:), r_mv_glob(i,:), b_mv_glob(i,:)
! enddo

Loading…
Cancel
Save