allora $\charpoly{f}=\charpolyrestr{f}{W}\cdot\charpolyrestr{f}{U}$ (la matrice associata in un'unione di basi
di $W$ e $U$ è infatti diagonale a blocchi),
\item se sia $W$ che $U$ sono $f$-invarianti, allora $f$ è diagonalizzabile
se e solo se sia $\restr{f}{W}$ che $\restr{f}{U}$ lo sono.
se e solo se sia $\restr{f}{W}$ che $\restr{f}{U}$ lo sono,
\item se $f$ è nilpotente, $p_f(\lambda)=\lambda^n$ (è sufficiente considerare
un eventuale altro autovalore diverso da zero e mostrare che se tale
autovalore esistesse, $f$ non sarebbe nilpotente),
\item un endomorfismo è nilpotente se e solo se $f^n =0$ (discende direttamente dal teorema di Hamilton-Cayley e dalla forma di $p_f$),
\end{itemize}
Si dice che $f$ è diagonalizzabile se $V$ ammette una base per cui
@ -1218,7 +1222,7 @@
che $f$ è diagonalizzabile se e solo se per ogni autovalore la
massima taglia di un blocco di Jordan è esattamente $1$, ossia
se il polinomio minimo di $f$ è un prodotto di fattori lineari
distinti. Si può fare la stessa considerazione guardando al
distinti (i.e.~se $\varphi_f(t)=\prod_i (t-\lambda_i)$). Si può fare la stessa considerazione guardando al
teorema di decomposizione primaria (gli indici di Fitting del
sottospazio generalizzato sono esattamente le moltiplicità algebriche
degli autovalori nel polinomio minimo).
@ -1380,7 +1384,13 @@
\item gli esponenti dei fattori lineari di $\varphi_f$
sono esattamente gli indici di Fitting degli autospazi
generalizzati di $f$,
\item gli autovalori hanno moltiplicità algebrica $1$ in $\varphi_f$ se e solo se $f$ è diagonalizzabile (è sufficiente utilizzare il precedente risultato, o considerare la forma canonica di Jordan).
\item gli autovalori hanno moltiplicità algebrica $1$ in $\varphi_f$ se e solo se $f$ è diagonalizzabile (è sufficiente utilizzare il precedente risultato, o considerare la forma canonica di Jordan),
\item se $f$ è nilpotente, $\varphi_f(t)= t^k$, dove $k$ è l'indice di Fitting
di $\Ker f$ (discende direttamente dalla forma di $p_f$ se $f$ è nilpotente),
\item se $p \in\KK[x]$ è tale per cui $p = p_1\cdots p_k$ con $p_1$, ..., $p_k \in\KK[x]$ coprimi, allora $\Ker p(f)=\Ker p_1(f)\oplus\cdots\oplus\Ker p_k(f)$ (teorema di decomposizione primaria; si dimostra facilmente attraverso il teorema di Bezout),
\item$V =\gensp1\oplus\cdots\oplus\gensp k$, se $\lambda_1$, ..., $\lambda_k$ sono tutti gli autovalori di $f$ (deriva direttamente dal teorema
di Hamilton-Cayley e dal teorema di decomposizione primaria, o, alternativamente,
dalla decomposizione di Fitting).
\end{itemize}
Sia $\v\in V$. Si definisce allora l'applicazione
@ -1392,7 +1402,7 @@
tale per cui $\Ker\val_{f, \v}=(\varphi_{f, \v})$.
Tale polinomio viene denotato come polinomio minimo
relativo al vettore $\v$. Si definisce in particolare
$\KK[f](\v) :=\Imm\val_{f, \v}$.
$\KK[f](\v) :=\Im\val_{f, \v}$.
\begin{itemize}
\item$\varphi_{f, \v}\mid\varphi_f$ (infatti $\varphi_f(f)=0$, e dunque $\varphi_f(f)$ annulla $\v$),
@ -1407,7 +1417,8 @@
\item se $\v$, ..., $f^{k}(\v)$ sono linearmente indipendenti per qualche $\v\in V$, allora $\deg\varphi_f \geq\varphi_{f, \v}\geq k +1$.
\item esiste sempre un vettore $\v$ tale per cui
$\varphi_f =\varphi_{f, \v}$ (se $\KK$ è infinito).
\item$p(f)$ è invertibile $\iff\Ker p(f)=\zerovecset$$\iff\MCD(\varphi_f, p)\in\KK^*$, se $p \in\KK[x]$.
\item$p(f)$ è invertibile $\iff\Ker p(f)=\zerovecset$$\iff\MCD(\varphi_f, p)\in\KK^*$, se $p \in\KK[x]$ (è sufficiente
applicare il teorema di Bezout).
\end{itemize}
Un vettore $\v$ si dice ciclico rispetto a $f$ se
@ -1426,7 +1437,202 @@
il polinomio minimo di un qualche endomorfismo; analogamente
ogni polinomio monico è, a meno del segno, un polinomio
caratteristico).
a meno)
\subsection{La forma canonica di Jordan}
Si definisce blocco di Jordan di taglia $k$ relativo
all'autovalore $\lambda$ la seguente matrice:
\[J_{\lambda, k} :=\begin{pmatrix}
\lambda&1&0&\cdots&0 \\
0&\ddots&\ddots&&\vdots\\
\vdots&\ddots&\ddots&\ddots&0\\
\vdots&&\ddots&\ddots&1 \\
0&\cdots&\cdots&0&\lambda
\end{pmatrix},\]
ossia la matrice che ha solo $\lambda$ sulla diagonale, $1$ sulla
sopradiagonale e $0$ nelle altre posizioni. Si può
sempre restringere un blocco di Jordan a un blocco nilpotente
considerando $J = J_{\lambda, k}-\lambda I_k$. Tale blocco
ha come polinomio minimo $\varphi_J(t)= t^k$, e dunque
$\varphi_{J_{\lambda, k}}(t)=(t-\lambda)^k$. Allo stesso
modo si calcola $p_{J_{\lambda, k}}(t)=(t-\lambda)^k$. Si osserva dunque
che $\mu_{a, J_{\lambda, k}}(\lambda)=\mu_{a, J}(0)$.
Poiché il polinomio caratteristico ed il polinomio minimo coincidono a meno
del segno, esiste sempre una base ciclica per la quale $J_{\lambda, k}$
si scrive come matrice compagna di $\varphi_{J_{\lambda, k}}$.
Si definisce forma canonica di Jordan di un endomorfismo $f$
una sua matrice associata in una base $\basis$ tale per cui:
\[M_\basis(f)=\begin{pmatrix}
J_1 && 0 \\
&\ddots&\\
0 && J_s \end{pmatrix}, \]
dove $J_1$, ..., $J_s$ sono blocchi di Jordan. La forma canonica
di Jordan esiste sempre ed è unica a meno di permutazione dei blocchi,
se tutti gli autovalori di $f$ sono in $\KK$ (teorema di Jordan; se
gli autovalori di $f$ non sono tutti in $\KK$, si può sempre considerare
un'estensione di campo in cui esistono).
Si definisce autospazio generalizzato relativo all'autovalore $\lambda$ di
$f \in\End(V)$ lo spazio:
\[\Gensp=\Ker(f -\lambda\Idv)^n. \]
Una definizione alternativa, ma equivalente di $\Gensp$ è la seguente:
\[\Gensp=\{\v\in V \mid\exists k \in\NN\mid(f-\lambda\Idv)^k =\vec0\}, \]
ossia $\Gensp$ è lo spazio dei vettori $\v\in V$ tali per cui, applicando ripetutamente $f-\lambda\Idv$, si ottiene un autovettore relativo a $\lambda$ (per
dimostrare l'equivalenza delle due dimostrazioni è sufficiente considerare la
decomposizione di Fitting). In generale, dalla catena della decomposizione
dove $k$ è la molteplicità algebrica di $\lambda$ in $\varphi_f$ (in particolare
si ottiene sempre l'autospazio generalizzato sostituendo $\mu_a(\lambda)$ a $q$,
dacché $\mu_a(\lambda)\geq k$).
In generale vale che:
\[ V =\gensp1\oplus\cdots\oplus\gensp k, \]
se $\lambda_1$, ..., $\lambda_k$ sono tutti gli autovalori di $f$ (vd.~polinomio minimo). Inoltre, $\restr{f}{\Gensp}$ ammette come autovalore soltanto $\lambda$
(pertanto $\dim\Gensp=\mu_{a, f}(\lambda)$, confrontando i polinomi caratteristici). Si osserva inoltre che $\Gensp$ è sempre $f$-invariante. Infatti ogni $f$ induce due catene di inclusione:
&\Ker B = B^{k-1}(U_1) \oplus B^{k-2}(U_2) \oplus\cdots\oplus U_k;
\end{flalign*}
\item Si scelgano da queste basi i vettori che generano ogni blocco
relativo a $\lambda$ (in particolare ogni vettore di base di $U_i$ genera
un blocco di taglia $k-1+i$),
\item Per ogni blocco, generato dal vettore $\v$, si costruisca una base ordinata nel seguente modo:
\[\basis' =\{B^{t-1}\v ,\ldots , B \v, \v\}, \]
dove $t$ è l'indice minimo per cui $B^t \v=0$;
\end{enumerate}
\item Si uniscano ordinatamente a catena le basi ottenute in una base $\basis_J$. La base $[]_\basis\inv\basis_J$ è allora base di Jordan. In particolare, se
$P =\Matrix{\v_1\cdots\v_n}$, dove $\basis_J=\{\v_1, \ldots, \v_n\}$, vale
che $J = P\inv A P$ è esattamente la forma canonica di Jordan individuata
da tale base.
\end{enumerate}
Se $f$ è nilpotente, l'algoritmo può essere velocizzato notevolmente considerando
solamente $B := A$. Se $f$ ha un solo autovalore $\lambda$ e ammette una base ciclica (ossia esiste un solo blocco di Jordan), considerando $B := A -\lambda I_n$,
quasi ogni vettore è un vettore ciclico (è pertanto consigliato cercare un vettore
in modo casuale, piuttosto che estendere tutte le basi dei kernel).
\subsubsection{La forma canonica di Jordan reale}
Sia $A \in M(n, \RR)$. Allora
la forma canonica di Jordan reale è una variante reale della forma canonica di
Jordan che esiste sempre (infatti gli autovalori di $A$ non sono forzatamente
in $\RR$, e potrebbero dunque essere in $\CC\setminus\RR$). La forma canonica di
Jordan reale si costruisce a partire da una forma canonica di Jordan $J$
e una sua base di Jordan $\basis$ associata. Tale forma canonica
si costruisce mediante il seguente algoritmo:
\begin{enumerate}
\item Si scelga un autovalore $z$, se non si è già considerato il
suo coniugato $\conj z$:
\begin{enumerate}[a.]
\item Si prenda la base $\basis_z =\{\vv1, \ldots, \vv k, \conj{\vv1}, \ldots, \conj{\vv k}\}$ che
genera i blocchi di $z$ e $\conj z$ e si consideri la nuova
base $\basis_z' =\{\Re(\vv1), \imm(\vv1), \ldots, \Re(\vv k), \imm(\vv1k)\}$,
\item In tale base la forma canonica di Jordan varia eliminando i blocchi
di $\conj z$, sostituendo all'autovalore $z = a + bi$ il seguente blocco:
\[\Matrix{
a & -b \\ b & a
}, \]
ed ingrandendo gli eventuali $1$ mediante l'identità $I_2$ (tale processo prende
il nome di complessificazione).
\end{enumerate}
\item La matrice ottenuta dopo aver considerato tutti gli eventuali autovalori complessi è una forma canonica di Jordan reale, e la base ottenuta mediante
tutti i processi di complessificazione è una base di Jordan reale.
\end{enumerate}
\subsection{Prodotto scalare e congruenza}
Si consideri una mappa $\varphi : V \times V \to\KK$. Si dice che
@ -1468,7 +1674,7 @@
\item$\Ker a_\varphi= V^\perp$,
\item$\varphi$ è non degenere se e solo se $M_\basis(\varphi)$ è invertibile,