feat(eps): cenni di teoria della misura e di probabilità reale

main
parent e71b07726d
commit 8e949de822

File diff suppressed because it is too large Load Diff

@ -12,7 +12,7 @@
\title{\Huge{Schede riassuntive di \\ \textit{Elementi di Probabilità e Statistica}}}
\date{A.A. 2023-2024 \\[0.6in] Ultimo aggiornamento: \today \\[1in] \href{https://eps.hearot.it}{\texttt{https://eps.hearot.it}}}
\author{A cura di Gabriel Antonio Videtta\footnote{Basato su un layout di \underline{Luca Lombardo} e di \underline{Francesco Sorce}.} \\ \href{mailto:g.videtta1@studenti.unipi.it}{\texttt{g.videtta1@studenti.unipi.it}}}
\author{A cura di Gabriel Antonio Videtta\footnote{Basato su un layout di \underline{Luca Lombardo} e di \underline{Francesco Sorce}.} \\ \href{mailto:g.videtta1@studenti.unipi.it}{\texttt{g.videtta1@studenti.unipi.it}} \\[0.3in] Testo basato sul contenuto del corso del prof. Maurelli e del prof. Trevisan.}
\begin{document}
\maketitle

@ -138,10 +138,10 @@
\item $P(\emptyset) = 0$,
\item $P(\bigcupdot_{i \in [n]} A_i) = \sum_{i \in [n]} P(A_i)$ ($\sigma$-additività finita),
\item $P(A) + P(A^c) = 1$,
\item $A \subseteq B \implies P(A) \leq P(B)$ e $P(B \setminus A) = P(B) - P(A)$ (segue da (iii)),
\item $A \subseteq B \implies P(A) \leq P(B)$ e $P(B \setminus A) = P(B) - P(A)$ (segue da (iii.)),
\item $P(B \setminus A) = P(B) - P(A \cap B)$ (segue da (iv) considerando che $B \setminus A = B \setminus (A \cap B)$),
\item $P(A \cup B) = P(A \Delta B \cupdot A \cap B) = P(A) + P(B) - P(A \cap B)$ (segue da (v)),
\item $P(\bigcup_{i \in [n]} A_i) = \sum_{j \in [n]} (-1)^{j+1} \sum_{1 \leq i_1 < \cdots < i_j \leq n} P(\bigcap_{k \in [j]} A_{i_{k}})$ (segue da (vi) per induzione, Principio di inclusione-esclusione ``probabilistico''),
\item $P(A \cup B) = P(A \Delta B \cupdot A \cap B) = P(A) + P(B) - P(A \cap B)$ (segue da (v.)),
\item $P(\bigcup_{i \in [n]} A_i) = \sum_{j \in [n]} (-1)^{j+1} \sum_{1 \leq i_1 < \cdots < i_j \leq n} P(\bigcap_{k \in [j]} A_{i_{k}})$ (segue da (vi.) per induzione, Principio di inclusione-esclusione ``probabilistico''),
\item $P(\bigcup_{i \in \NN} A_i) \leq \sum_{i \in \NN} P(A_i)$ ($\sigma$-subadditività).
\end{enumerate}
\end{proposition}

@ -5,16 +5,23 @@
\begin{multicols*}{2}
Discutiamo in questa sezione la teoria della probabilità sulla
retta reale, uscendo dunque dal caso discreto.
retta reale, uscendo dunque dal caso discreto. \smallskip
Per restringere la $\sigma$-algebra su cui lavoreremo (ossia l'insieme degli
eventi interessanti), siamo costretti a limitarci a una $\sigma$-algebra molto più
piccola di $\PP(\RR)$, la $\sigma$-algebra dei boreliani, che ci permette di escludere
``casi meno interessanti''.
``casi meno interessanti''. \smallskip
\begin{warn}
Eccetto che nella prima sezione, assumeremo se non detto altrimenti
di star lavorando sullo spazio misurabile
$(\RR, \BB(\RR))$ dotato eventualmente della misura di Lebesgue $m$. $\BB(\RR)$ ed
$m$ sono definiti nella sezione seguente.
\end{warn}
\section{Cenni di teoria della misura}
\subsection{La \texorpdfstring{$\sigma$}{σ}-algebra di Borel}
\subsection{La \texorpdfstring{$\sigma$}{σ}-algebra di Borel e funzioni boreliane}
\begin{definition}[$\sigma$-algebra dei boreliani]
Dato uno spazio metrico separabile\footnote{
@ -27,6 +34,7 @@ piccola di $\PP(\RR)$, la $\sigma$-algebra dei boreliani, che ci permette di esc
\[
\BB(X) \defeq \sigma \{ A \subseteq X \mid A \text{ aperto}\, \}.
\]
Gli elementi della $\sigma$-algebra di Borel sono detti \textit{boreliani}.
\end{definition}
\begin{proposition}[Proprietà di $\BB(X)$]
@ -35,7 +43,8 @@ piccola di $\PP(\RR)$, la $\sigma$-algebra dei boreliani, che ci permette di esc
\begin{enumerate}[(i.)]
\item $\BB(X)$ contiene tutti gli aperti e i chiusi di $X$ (infatti
metrico e separabile implica II-numerabile),
metrico e separabile implica II-numerabile), pertanto se $\tau(X)$ è la
topologia di $X$ vale che $\tau(X) \subseteq \BB(X)$,
\item $\BB(X) = \sigma \{ A \subseteq X \mid A \text{ chiuso}\, \}$, ossia
$\BB(X)$ è generata anche dai chiusi di $X$ (infatti $\BB(X)$ è chiuso per
complementare),
@ -56,7 +65,23 @@ piccola di $\PP(\RR)$, la $\sigma$-algebra dei boreliani, che ci permette di esc
\end{enumerate}
\end{proposition}
\subsection{Definizione di misura e misura di Lebesgue}
\begin{definition}
Data una funzione $f : X \to Y$ con $X$ e $Y$ spazi metrici separabili, si dice che
$f$ è una \textbf{funzione boreliana} se $f\inv(A)$ è boreliano per ogni
$A$ boreliano di $Y$. Equivalentemente $f$ è boreliana se la controimmagine di ogni
boreliano è un boreliano.
\end{definition}
\begin{proposition}
Sia $f : X \to Y$ con $X$ e $Y$ spazi metrici separabili una funzione continua. Allora
$f$ è boreliana. \smallskip
Segue dal fatto che $\BB(Y)$ è generato dagli aperti di $Y$, le cui controimmagini sono
aperte, e dunque boreliane.
\end{proposition}
\subsection{Definizione e proprietà di misura, \texorpdfstring{$\pi$}{π}-sistemi per \texorpdfstring{$\sigma$}{σ}-algebre}
\begin{definition}[Misura]
Dato $(\Omega, \FF)$ spazio misurabile, una misura $\mu$ su $(\Omega, \FF)$ è una
@ -67,12 +92,161 @@ piccola di $\PP(\RR)$, la $\sigma$-algebra dei boreliani, che ci permette di esc
\]
\end{definition}
\begin{definition}[Insiemi $\mu$-trascurabili e proprietà $\mu$-quasi certe]
\begin{remark}[Proprietà basilari di una misura]
Dal momento che si richiede per una misura valga $\mu(\emptyset) = 0$, si verifica
facilemente che vale la $\sigma$-additività finita. \smallskip
Inoltre, se $A \subseteq B$, allora $\mu(B) = \mu(B \setminus A \cupdot A) = \mu(B \setminus A) + \mu(A)$, e
dunque vale sempre che $\mu(A) \leq \mu(B)$. Vale inoltre ancora la $\sigma$-subadditività, con la stessa
dimostrazione data per la probabilità, e dunque:
\[
\mu\left(\bigcup_{i \in \NN} A_i\right) \leq \sum_{i \in \NN} \mu(A_i).
\]
\end{remark}
\begin{remark}[Comportamento di $\mu$ al limite]
Se $(A_i)_{i \in \NN}$ è una famiglia numerabile di
insiemi in $\FF$, allora, seguendo la stessa dimostrazione
data per le misure di probabilità, che:
\begin{enumerate}[(i.)]
\item $A_i \goesup A \implies \mu(A_i) \goesup \mu(A)$,
\item $A_i \goesdown A \implies \mu(A_i) \goesdown \mu(A)$.
\end{enumerate}
\end{remark}
\begin{definition}
Una misura $\mu$ su $(\Omega, \FF)$ si dice \textbf{misura finita} se $\mu(\Omega)$ è finito.
\end{definition}
\begin{proposition}[Proprietà di una misura finita $\mu$]
Sia $\mu$ una misura finita su $(\Omega, \FF)$. Allora valgono le seguenti affermazioni:
\begin{enumerate}[(i.)]
\item $P(A) = \frac{\mu(A)}{\mu(\Omega)}$ è una misura di probabilità,
\item $\mu(A)$ è sempre finito e $\mu(\Omega) = \mu(A) + \mu(A^c)$,
\item $A \subseteq B \implies \mu(B) = \mu(B \setminus A) + \mu(A)$,
\item $\mu(B \setminus A) = \mu(B) - \mu(A \cap B)$,
\item $\mu(A \cup B) = \mu(A \Delta B \cupdot A \cap B) = \mu(A) + \mu(B) - \mu(A \cap B)$,
\item $\mu\left(\bigcup_{i \in [n]} A_i\right) = \sum_{j \in [n]} (-1)^{j+1} \sum_{1 \leq i_1 < \cdots < i_j \leq n} \mu\left(\bigcap_{k \in [j]} A_{i_{k}}\right)$ (Principio di inclusione-esclusione per le misure finite).
\end{enumerate}
Tutte le affermazioni seguono immediatamente dalla prima.
\end{proposition}
\begin{definition}[Insiemi $\mu$-trascurabili e proprietà che accadono $\mu$-quasi sempre]
Un insieme $A \in \FF$ si dice \textbf{$\mu$-trascurabile} se
$\mu(A) = 0$. Una proprietà $M$ si dice che accade
$\mu$-quasi certamente se esiste $A \in \FF$ $\mu$-trascurabile per cui
$\mu$-quasi sempre ($\mu$-q.a.) se esiste $A \in \FF$ $\mu$-trascurabile per cui
$M$ accade per $A^c$.
\end{definition}
\begin{definition}[\texorpdfstring{$\pi$}{π}-sistema di una $\sigma$-algebra]
Sia $(\Omega, \FF)$ uno spazio misurabile. Allora un sottoinsieme $\mathcal{C} \subseteq \FF$
si dice \textbf{$\pi$-sistema di $\FF$} se:
\begin{enumerate}[(i.)]
\item $A$, $B \in \mathcal{C} \implies A \cap B \in \mathcal{C}$ (chiusura per intersezioni),
\item $\sigma(C) = \FF$ (genera $\FF$).
\end{enumerate}
\end{definition}
\begin{remark}
Un $\pi$-sistema di una $\sigma$-algebra svolge lo ``stesso ruolo'' che una
base svolge per una topologia.
\end{remark}
\begin{lemma}[di Dynkin, versione probabilistica]
Sia $(\Omega, \FF)$ uno spazio misurabile e sia $\mathcal{C}$ un suo $\pi$-sistema. Siano
$P$ e $Q$ due probabilità sullo spazio misurabile di $\Omega$. Se $P$ e $Q$ coincidono su
$\mathcal{C}$, allora $P \equiv Q$.
\end{lemma}
\begin{example}
Alcuni esempi di $\pi$-sistemi per $(\RR, \BB(\RR))$ sono:
\begin{itemize}
\item gli aperti, ovverosia $\mathcal{C} = \{ A \in \FF \mid A \text{ aperto}\, \}$ (oppure i chiusi),
\item le semirette (a sinistra), ovverosia $\mathcal{C} = \{ (-\infty, a] \mid a \in \RR \}$ (oppure le semirette a destra),
\item gli intervalli semiaperti (a sinistra), ovverosia $\mathcal{C} = \{ (a, b] \mid a, b \in \RR, b > a \}$ (oppure semiaperti a destra).
\end{itemize}
\end{example}
\subsection{La misura di Lebesgue}
\begin{theorem}[Esistenza e unicità della misura di Lebesgue]
Esiste ed è unica la misura $m$ su $(\RR, \BB(\RR))$ tale per cui
$m([a, b]) = b-a$ per ogni $a$, $b \in \RR$ con $b > a$. Tale misura
è detta \textbf{misura di Lebesgue}. \smallskip
L'unicità segue dall'enunciato generale del lemma di Dynkin.
\end{theorem}
\begin{remark}
Dal momento che $m([0, 1]) = 1$,
la misura $\restr{m}{[0,1]}$ è una misura di probabilità su $([0,1], \BB([0, 1]))$,
detta \textit{probabilità uniforme su $[0,1]$}. Analogamente per $a$, $b \in \RR$
con $b > a$, $m([a, b]) = b-a$ e
dunque $P = \frac{1}{b-a} \restr{m}{[a,b]}$ è una misura di probabilità (detta
\textit{probabilità uniforme su $[a,b]$}). \smallskip
Assumendo l'assioma della scelta si può dimostrare che \underline{non} si può estendere in modo coerente
$\restr{m}{[0,1]}$ a $([0, 1], \PP([0, 1]))$.
\end{remark}
\section{Probabilità reale, funzione di ripartizione (f.d.r.) e proprietà}
\begin{definition}
Si dice \textbf{probabilità reale} una qualsiasi
probabilità $P$ su $(\RR, \BB(\RR))$.
\end{definition}
\begin{definition}[Funzione di ripartizione di $P$]
Data una probabilità reale $P$ si definisce
allora la sua \textbf{funzione di ripartizione (f.d.r.)}
come la funzione $F : \RR \to [0, 1]$ tale per cui:
\[
F(x) = P((-\infty, x]), \quad \forall x \in \RR.
\]
Si definisce inoltre $F(\pm\infty) \defeq \lim_{x \to \pm\infty} F(x)$.
Indicheremo $F$ come $F_P$, e quando $P$ sarà nota dal contesto
ci limiteremo a scrivere $F$.
\end{definition}
\begin{proposition}[Proprietà della f.d.r.]
Sia $P$ una probabilità reale. Allora, se $F$ è la
sua f.d.r. vale che:
\begin{enumerate}[(i.)]
\item $F$ è crescente, ovvero $F(x) \geq F(y) \impliedby x \geq y$ (infatti $(-\infty, x] \supseteq (-\infty, y]$),
\item $F$ è continua a destra, ovverosia per ogni $\tilde{x} \in \RR$ vale che $\lim_{x \to \tilde{x}^+} F(x) = F(\tilde{x})$,
\item $F(-\infty) = 0 \impliedby ((-\infty, -i])_{i \in \NN} \goesdown \emptyset$,
\item $F(\infty) = 1 \impliedby ((-\infty, i])_{i \in \NN} \goesup \RR$.
\end{enumerate}
L'affermazione (ii.) segue dal fatto che per ogni successione decrecente da destra $(x_i)_{i \in \NN} \goesdown \tilde{x}$ è
tale per cui $((-\infty, x_i])_{i \in \NN} \goesdown (-\infty, \tilde{x})$, e dunque
$(P(x_i))_{i \in \NN} \goesdown P(\tilde{x})$.
\end{proposition}
% \begin{remark}
% La continuità a sinistra non è invece garantita dacché ogni successione da sinistra crescente $(x_i)_{i \in \NN} \goesup \tilde{x}$
% è tale per cui
% \end{remark}
\begin{proposition}[$P$ è univocamente determinata da $F$]
Sia $F : \RR \to \RR$ una funzione tale per cui:
\begin{enumerate}[(i.)]
\item $F$ è crescente,
\item $F$ è continua a destra,
\item $\lim_{x \to \infty} F(x) = 1$,
\item $\lim_{x \to -\infty} F(x) = 0$.
\end{enumerate}
Allora $0 \leq F \leq 1$ ed esiste un'unica probabilità reale $P$ avente
$F$ come funzione di ripartizione. \smallskip
L'unicità segue dal lemma di Dynkin.
\end{proposition}
\end{multicols*}
Loading…
Cancel
Save