You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

153 lines
5.6 KiB
Markdown

# La categoria hTop
* [ ] [definizione] Omotopia
* [ ] [**proposizione**] Omotopia è relazione di equivalenza
* [ ] [**proposizione**] Composizione passa alla relazione di omotopia
* [ ] [definizione] Inversa omotopica e Equivalenza omotopica
* [ ] [**proposizione**] Equivalenza omotopica è una equivalenza
## Funtore delle componenti connesse per archi
* [ ] [**teorema**] Mappe omotope inducono la stessa mappa nei $\pi_0$
# Gruppo fondamentale
## Omotopia di cammini
* [ ] [definizione] Omotopia di cammini
## Gruppo Fondamentale
* [ ] [definizione] Gruppo Fondamentale
* [ ] [**teorema**] Il gruppo fondamentale è un gruppo
* [ ] [definizione] Semplicemente connesso
## Cammini chiusi come applicazioni dal cerchio
* [ ] [**proposizione**] Continua su bordo si estende se e solo se classe di omotopia banale
* [ ] [**teorema**] Propriet\`a della corrispondenza tra $\pi_1(X)$ e $\spa{S^1,X}$
* [ ] [**proposizione**] Corrispondenza tra omotopie di cammini in $\Omega(X,x_0)$ e omotopie libere in ${[S^1,X]}$
## Funtorialità del gruppo fondamentale
* [ ] [definizione] Categoria degli spazi topologici puntati
* [ ] [**proposizione**] Funtore da $Top_\ast$ a $Grp$
* [ ] [definizione] Omotopia puntata
* [ ] [**proposizione**] Mappe omotope puntate inducono la stessa mappa sui gruppi fondamentali
## Dipendenze del gruppo fondamentale
* [ ] [**teorema**] Il punto base determina $\pi_1(X)$ a meno di isomorfismo
* [ ] [**proposizione**] Mappa omotopa all'identità induce isomorfismo
# Spazi contraibili e retratti
## Spazi contraibili
* [ ] [definizione] Spazio contraibile
* [ ] [definizione] Insieme stellato
* [ ] [definizione] Insieme Convesso
* [ ] [**proposizione**] Mappe a immagine in stellato
## Retratti di Deformazione
* [ ] [definizione] Retratto
* [ ] [**proposizione**] Proprietà dei retratti
* [ ] [definizione] Retratto di deformazione
# Rivestimenti
## Omeomorfismi locali
* [ ] [definizione] Omeomorfismo Locale
* [ ] [**proposizione**] Omeomorfismo locale implica aperta
## Rivestimenti
* [ ] [definizione] Rivestimento
* [ ] [**proposizione**] Rivestimento implica Omeomorfismo locale
* [ ] [definizione] Fibra
* [ ] [**teorema**] Teorema delle Fibre
* [ ] [definizione] Grado di un rivestimento
* [ ] [definizione] Rivestimento banale
* [ ] [**teorema**] Rivestimento da azione propriamente discontinua
## Sollevamenti
* [ ] [definizione] Sollevamento
* [ ] [**teorema**] Unicità del sollevamento
* [ ] [**teorema**] Esistenza e unicità del sollevamento dei cammini
* [ ] [**teorema**] Sollevamento dell'omotopia
* [ ] [**teorema**] Sollevamento delle omotopie di cammini
# Azione di Monodromia
* [ ] [definizione] Azione di monodromia
* [ ] [**teorema**] Proprietà dell'azione di monodromia
### Sollevamento di mappe qualsiasi
* [ ] [**teorema**] Sollevamento di mappe qualsiasi
## Applicazioni dell'azione di Monodromia
* [ ] [**teorema**] Gruppo fondamentale del cerchio
* [ ] [**teorema**] Teorema di Brower
# Teorema di Seifert-Van Kampen
* [ ] [**teorema**] Seifert-Van Kampen
# Calcolo del Gruppo fondamentale
## Gruppo fondamentale del prodotto
* [ ] [**teorema**] Gruppo fondamentale del prodotto
## Prodotto libero e gruppi liberi
* [ ] [definizione] Prodotto libero
* [ ] [**teorema**] Esistenza del prodotto libero
* [ ] [definizione] Gruppo libero
* [ ] [**teorema**] Propriet\`a universale del gruppo libero
## Van Kampen per intersezioni semplicemente connesse
* [ ] [**teorema**] Gruppo fondamentale del Bouquet di $n$ circonferenze
## Prodotto amalgamato
* [ ] [definizione] Prodotto amalgamato
* [ ] [**teorema**] Esistenza e unicit\`a del prodotto amalgamato
## Presentazioni di gruppi
* [ ] [definizione] Presentazione
* [ ] [**proposizione**] Propriet\`a universale delle presentazioni
* [ ] [**proposizione**] Presentazione del prodotto amalgamato
## Rango
* [ ] [definizione] Rango
## Gruppi fondamentali di proiettivi
* [ ] [**teorema**] I proiettivi complessi sono semplicemente connessi
* [ ] [**teorema**] Gruppi fondamentali dei proiettivi reali
## Gruppi fondamentali di superfici
### Toro
* [ ] [**teorema**] Gruppo fondamentale del toro
### Superfici con dato genere
* [ ] [**teorema**] Gruppo fondamentale delle superfici di genere $g$
* [ ] [**proposizione**] Genere determina univocamente il $\pi_1$
* [ ] [**teorema**] Genere, classe di Omotopia e $\pi_1$ sono invarianti completi
# Rivestimento Universale
* [ ] [definizione] Rivestimento universale
* [ ] [**teorema**] Gruppo fondamentale e fibra nel punto sono in bigezione
* [ ] [definizione] Semilocalmente semplicemente connesso
* [ ] [**teorema**] Esistenza dei rivestimenti universali
## Propriet\`a categoriche dei rivestimenti
* [ ] [**proposizione**] Propriet\`a universale del rivestimento universale
* [ ] [definizione] Morfismo di rivestimenti
* [ ] [definizione] Automorfismi di rivestimenti
* [ ] [**proposizione**] Azione di $\Aut(p)$ e di monodromia commutano
### Isomorfismi di rivestimenti
* [ ] [**teorema**] Caratterizzazione di rivestimenti isomorfi fissato un punto
* [ ] [**proposizione**] Caratterizzazione di rivestimenti isomorfi
## Rivestimenti regolari e corrispondenza di Galois
* [ ] [**proposizione**] Azione di $\Aut(p)$ \`e propriamente discontinua
* [ ] [**teorema**] Per rivestimento da azione propriamente discontinua gli automorfismi sono il gruppo
* [ ] [definizione] Rivestimento regolare
* [ ] [**proposizione**] I rivestimenti universali sono regolari
* [ ] [**teorema**] Caratterizzazioni dei rivestimenti regolari
* [ ] [**teorema**] $\Aut(p)$ in termini del gruppo fondamentale
* [ ] [**proposizione**] Automorfismi di rivestimenti regolari
## Applicazioni della teoria dei rivestimenti
* [ ] [**teorema**] Borsuk-Ulam