Fully working, clean outputs. Still work to do

main
Luca Lombardo 3 years ago
parent f914400fcf
commit efcf15ef28

@ -1,65 +1,60 @@
#!/usr/bin/env python3
import requests
from multiprocessing.pool import ThreadPool
import gzip
import pandas as pd
# import os
import os
import csv
def download_url(url):
print("downloading: ",url)
print("Downloading:", url)
file_name_start_pos = url.rfind("/") + 1
file_name = url[file_name_start_pos:]
if os.path.isfile(file_name):
print("Already downloaded: skipping")
return
r = requests.get(url, stream=True)
if r.status_code == requests.codes.ok:
with open(file_name, 'wb') as f:
for data in r:
f.write(data)
r.raise_for_status()
with open(file_name, 'wb') as f:
for chunk in r.iter_content(chunk_size=4096):
f.write(chunk)
return url
urls = ["https://datasets.imdbws.com/name.basics.tsv.gz",
"https://datasets.imdbws.com/title.principals.tsv.gz",
"https://datasets.imdbws.com/title.basics.tsv.gz"]
# Run 3 multiple threads. Each call will take the next element in urls list
results = ThreadPool(3).imap_unordered(download_url, urls)
for r in results:
print(r)
def titlebasics():
df = pd.read_csv('title.basics.tsv.gz', sep='\t', usecols=['tconst', 'primaryTitle', 'isAdult'], compression='gzip')
df.query('isAdult != 1', inplace=True)
df.to_csv('FilmFiltrati.txt', sep=' ', columns=['tconst', 'primaryTitle'], header=False)
def namebasics():
df = pd.read_csv('name.basics.tsv.gz', sep='\t', usecols=['nconst', 'primaryName', 'primaryProfession'], compression='gzip')
df.query('primaryProfession == "actor" or primaryProfession == "actress"', inplace=True)
df.to_csv('Attori.txt', sep=' ', columns=['nconst', 'primaryName'], header=False)
def titleprincipals():
df = pd.read_csv('title.principals.tsv.gz', sep='\t', usecols=['nconst','category'], compression='gzip')
df.query('category == "actor" or category == "actress"', inplace=True)
df.to_csv('') #DA FARE
titlebasics()
namebasics()
# titleprincipals()
# def cancella():
# os.system('rm *.gz')
for url in urls:
download_url(url)
os.makedirs("data", exist_ok=True)
print("Filtering actors...")
df_attori = pd.read_csv(
'name.basics.tsv.gz', sep='\t', compression='gzip',
usecols=['nconst', 'primaryName', 'primaryProfession'],
dtype={'primaryName': 'U', 'primaryProfession': 'U'},
converters={'nconst': lambda x: int(x.lstrip("nm0"))})
df_attori.query('primaryProfession.str.contains("actor") or primaryProfession.str.contains("actress")', inplace=True)
df_attori.to_csv('data/Attori.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['nconst', 'primaryName'], header=False, index=False)
del df_attori # Free memory
print("Filtering films...")
df_film = pd.read_csv(
'title.basics.tsv.gz', sep='\t', compression='gzip',
usecols=['tconst', 'primaryTitle', 'isAdult', 'titleType'],
dtype={'primaryTitle': 'U', 'titleType': 'U'},
converters={'tconst': lambda x: int(x.lstrip("t0")), 'isAdult': lambda x: x != "0"})
df_film.query('not isAdult and titleType in ["movie", "tvSeries", "tvMovie", "tvMiniSeries"]',
inplace=True)
df_film.to_csv('data/FilmFiltrati.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'primaryTitle'], header=False, index=False)
filtered_tconsts = df_film["tconst"].to_list()
del df_film # Free memory
print("Filtering relations...")
df_relazioni = pd.read_csv(
'title.principals.tsv.gz', sep='\t', compression='gzip',
usecols=['tconst', 'nconst','category'],
dtype={'category': 'U'},
converters={'nconst': lambda x: int(x.lstrip("nm0")), 'tconst': lambda x: int(x.lstrip("t0"))})
df_relazioni.query('(category == "actor" or category == "actress") and tconst in @filtered_tconsts', inplace=True)
df_relazioni.to_csv('data/Relazioni.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'nconst'], header=False, index=False)

Loading…
Cancel
Save