moved
parent
5df96d4cb1
commit
f26f632f73
@ -1,82 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
import gzip
|
||||
import requests
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
import csv
|
||||
|
||||
#-----------------DOWNLOAD .GZ FILES FROM IMDB DATABASE-----------------#
|
||||
def colored(r, g, b, text):
|
||||
return "\033[38;2;{};{};{}m{} \033[38;2;255;255;255m".format(r, g, b, text)
|
||||
|
||||
def download_url(url):
|
||||
print("Downloading:", url)
|
||||
file_name_start_pos = url.rfind("/") + 1
|
||||
file_name = url[file_name_start_pos:]
|
||||
if os.path.isfile(file_name):
|
||||
print(colored(0,170,0,"Already downloaded: skipping"))
|
||||
return
|
||||
|
||||
r = requests.get(url, stream=True)
|
||||
r.raise_for_status()
|
||||
with open(file_name, 'wb') as f:
|
||||
for chunk in r.iter_content(chunk_size=4096):
|
||||
f.write(chunk)
|
||||
return url
|
||||
|
||||
urls = ["https://datasets.imdbws.com/name.basics.tsv.gz",
|
||||
"https://datasets.imdbws.com/title.principals.tsv.gz",
|
||||
"https://datasets.imdbws.com/title.basics.tsv.gz",
|
||||
"https://datasets.imdbws.com/title.ratings.tsv.gz"]
|
||||
|
||||
for url in urls:
|
||||
download_url(url)
|
||||
|
||||
os.makedirs("data", exist_ok=True) # Generate (recursively) folders, ignores the comand if they already exists
|
||||
|
||||
#------------------------------FILTERING------------------------------#
|
||||
|
||||
print("Filtering actors...")
|
||||
df_attori = pd.read_csv(
|
||||
'name.basics.tsv.gz', sep='\t', compression='gzip',
|
||||
usecols=['nconst', 'primaryName', 'primaryProfession'],
|
||||
dtype={'primaryName': 'U', 'primaryProfession': 'U'},
|
||||
converters={'nconst': lambda x: int(x.lstrip("nm0"))})
|
||||
df_attori.query('primaryProfession.str.contains("actor") or primaryProfession.str.contains("actress")', inplace=True)
|
||||
|
||||
|
||||
print("Filtering movies...")
|
||||
df_film = pd.read_csv(
|
||||
'title.basics.tsv.gz', sep='\t', compression='gzip',
|
||||
usecols=['tconst', 'primaryTitle', 'isAdult', 'titleType'], # Considering only this columns
|
||||
dtype={'primaryTitle': 'U', 'titleType': 'U'}, # Both are unsigned integers
|
||||
converters={'tconst': lambda x: int(x.lstrip("t0")), 'isAdult': lambda x: x != "0"}) # All movies starts with t0, we are just cleaning the output. Then remove all adult movies
|
||||
df_ratings = pd.read_csv(
|
||||
'title.ratings.tsv.gz', sep='\t', compression='gzip',
|
||||
usecols=['tconst', 'numVotes'],
|
||||
dtype={'numVotes': 'u8'}, # Unsigned integer
|
||||
converters={'tconst': lambda x: int(x.lstrip("t0"))})
|
||||
df_film = pd.merge(df_film, df_ratings, "left", on="tconst")
|
||||
del df_ratings
|
||||
df_film.query('not isAdult and titleType in ["movie", "tvSeries", "tvMovie", "tvMiniSeries"]',
|
||||
inplace=True)
|
||||
VOTES_MEAN = int(200000)
|
||||
df_film.query('numVotes > @VOTES_MEAN', inplace=True)
|
||||
filtered_tconsts = df_film["tconst"].to_list()
|
||||
|
||||
print("Filtering relations...")
|
||||
df_relazioni = pd.read_csv(
|
||||
'title.principals.tsv.gz', sep='\t', compression='gzip',
|
||||
usecols=['tconst', 'nconst','category'], # Considering only this columns
|
||||
dtype={'category': 'U'}, # Unsigned integer
|
||||
converters={'nconst': lambda x: int(x.lstrip("nm0")), 'tconst': lambda x: int(x.lstrip("t0"))}) # Cleaning
|
||||
df_relazioni.query('(category == "actor" or category == "actress") and tconst in @filtered_tconsts', inplace=True)
|
||||
|
||||
|
||||
# Write the filtered files
|
||||
df_attori.to_csv('data/Attori.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['nconst', 'primaryName'], header=False, index=False)
|
||||
|
||||
df_film.to_csv('data/FilmFiltrati.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'primaryTitle'], header=False, index=False)
|
||||
|
||||
df_relazioni.to_csv('data/Relazioni.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'nconst'], header=False, index=False)
|
Loading…
Reference in New Issue