main
Luca Lombardo 3 years ago
parent 5df96d4cb1
commit f26f632f73

@ -1,82 +0,0 @@
#!/usr/bin/env python3
import gzip
import requests
import pandas as pd
import numpy as np
import os
import csv
#-----------------DOWNLOAD .GZ FILES FROM IMDB DATABASE-----------------#
def colored(r, g, b, text):
return "\033[38;2;{};{};{}m{} \033[38;2;255;255;255m".format(r, g, b, text)
def download_url(url):
print("Downloading:", url)
file_name_start_pos = url.rfind("/") + 1
file_name = url[file_name_start_pos:]
if os.path.isfile(file_name):
print(colored(0,170,0,"Already downloaded: skipping"))
return
r = requests.get(url, stream=True)
r.raise_for_status()
with open(file_name, 'wb') as f:
for chunk in r.iter_content(chunk_size=4096):
f.write(chunk)
return url
urls = ["https://datasets.imdbws.com/name.basics.tsv.gz",
"https://datasets.imdbws.com/title.principals.tsv.gz",
"https://datasets.imdbws.com/title.basics.tsv.gz",
"https://datasets.imdbws.com/title.ratings.tsv.gz"]
for url in urls:
download_url(url)
os.makedirs("data", exist_ok=True) # Generate (recursively) folders, ignores the comand if they already exists
#------------------------------FILTERING------------------------------#
print("Filtering actors...")
df_attori = pd.read_csv(
'name.basics.tsv.gz', sep='\t', compression='gzip',
usecols=['nconst', 'primaryName', 'primaryProfession'],
dtype={'primaryName': 'U', 'primaryProfession': 'U'},
converters={'nconst': lambda x: int(x.lstrip("nm0"))})
df_attori.query('primaryProfession.str.contains("actor") or primaryProfession.str.contains("actress")', inplace=True)
print("Filtering movies...")
df_film = pd.read_csv(
'title.basics.tsv.gz', sep='\t', compression='gzip',
usecols=['tconst', 'primaryTitle', 'isAdult', 'titleType'], # Considering only this columns
dtype={'primaryTitle': 'U', 'titleType': 'U'}, # Both are unsigned integers
converters={'tconst': lambda x: int(x.lstrip("t0")), 'isAdult': lambda x: x != "0"}) # All movies starts with t0, we are just cleaning the output. Then remove all adult movies
df_ratings = pd.read_csv(
'title.ratings.tsv.gz', sep='\t', compression='gzip',
usecols=['tconst', 'numVotes'],
dtype={'numVotes': 'u8'}, # Unsigned integer
converters={'tconst': lambda x: int(x.lstrip("t0"))})
df_film = pd.merge(df_film, df_ratings, "left", on="tconst")
del df_ratings
df_film.query('not isAdult and titleType in ["movie", "tvSeries", "tvMovie", "tvMiniSeries"]',
inplace=True)
VOTES_MEAN = int(200000)
df_film.query('numVotes > @VOTES_MEAN', inplace=True)
filtered_tconsts = df_film["tconst"].to_list()
print("Filtering relations...")
df_relazioni = pd.read_csv(
'title.principals.tsv.gz', sep='\t', compression='gzip',
usecols=['tconst', 'nconst','category'], # Considering only this columns
dtype={'category': 'U'}, # Unsigned integer
converters={'nconst': lambda x: int(x.lstrip("nm0")), 'tconst': lambda x: int(x.lstrip("t0"))}) # Cleaning
df_relazioni.query('(category == "actor" or category == "actress") and tconst in @filtered_tconsts', inplace=True)
# Write the filtered files
df_attori.to_csv('data/Attori.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['nconst', 'primaryName'], header=False, index=False)
df_film.to_csv('data/FilmFiltrati.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'primaryTitle'], header=False, index=False)
df_relazioni.to_csv('data/Relazioni.txt', sep='\t', quoting=csv.QUOTE_NONE, escapechar='\\', columns=['tconst', 'nconst'], header=False, index=False)
Loading…
Cancel
Save