You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
lean4game/server/testgame/TestGame/LemmaDocs.lean

181 lines
3.0 KiB
Plaintext

import GameServer.Commands
-- Wird im Level "Implication 11" ohne Beweis angenommen.
LemmaDoc not_not as not_not in "Logic"
"
### Aussage
`¬¬A ↔ A`
### Annahmen
`(A : Prop)`
"
-- Wird im Level "Implication 10" ohne Beweis angenommen.
LemmaDoc not_or_of_imp as not_or_of_imp in "Logic"
"
### Aussage
`¬A B`
### Annahmen
`(A B : Prop)`\\
`(h : A → B)`
"
-- Wird im Level "Implication 12" bewiesen.
LemmaDoc imp_iff_not_or as imp_iff_not_or in "Logic"
"
### Aussage
`(A → B) ↔ ¬A B`
### Annahmen
`(A B : Prop)`
"
2 years ago
LemmaDoc Nat.succ_pos as Nat.succ_pos in "Nat"
"
"
2 years ago
LemmaDoc Nat.pos_iff_ne_zero as Nat.pos_iff_ne_zero in "Nat"
2 years ago
"
"
LemmaDoc zero_add as zero_add in "Addition"
"This lemma says `∀ a : , 0 + a = a`."
LemmaDoc add_zero as add_zero in "Addition"
"This lemma says `∀ a : , a + 0 = a`."
LemmaDoc add_succ as add_succ in "Addition"
"This lemma says `∀ a b : , a + succ b = succ (a + b)`."
2 years ago
LemmaDoc not_forall as not_forall in "Logic"
"`∀ (A : Prop), ¬(∀ x, A) ↔ ∃x, (¬A)`."
2 years ago
LemmaDoc not_exists as not_exists in "Logic"
"`∀ (A : Prop), ¬(∃ x, A) ↔ ∀x, (¬A)`."
2 years ago
DefinitionDoc Even
"
`even n` ist definiert als `∃ r, a = 2 * r`.
Die Definition kann man mit `unfold even at *` einsetzen.
"
2 years ago
DefinitionDoc Odd
"
`odd n` ist definiert als `∃ r, a = 2 * r + 1`.
Die Definition kann man mit `unfold odd at *` einsetzen.
"
2 years ago
DefinitionDoc Injective
"
`Injective f` ist als
```
∀ {a b : U}, a < b → f a < f b
```
definiert.
"
DefinitionDoc Surjective
"
"
DefinitionDoc Bijective
"
"
DefinitionDoc StrictMono
"
`StrictMono`
```
∀ {a b : U}, f a f b → a = b
```
"
LemmaDoc not_odd as not_odd in "Nat"
"`¬ (odd n) ↔ even n`"
LemmaDoc not_even as not_even in "Nat"
"`¬ (even n) ↔ odd n`"
LemmaDoc even_square as even_square in "Nat"
"`∀ (n : ), even n → even (n ^ 2)`"
LemmaDoc mem_univ as mem_univ in "Set"
"x ∈ @univ α"
2 years ago
LemmaDoc not_mem_empty as not_mem_empty in "Set"
""
LemmaDoc empty_subset as empty_subset in "Set"
""
LemmaDoc Subset.antisymm_iff as Subset.antisymm_iff in "Set"
""
2 years ago
LemmaDoc Nat.prime_def_lt'' as Nat.prime_def_lt'' in "Nat"
""
2 years ago
LemmaDoc Finset.sum_add_distrib as Finset.sum_add_distrib in "Sum"
""
LemmaDoc Fin.sum_univ_castSucc as Fin.sum_univ_castSucc in "Sum"
""
LemmaDoc Nat.succ_eq_add_one as Nat.succ_eq_add_one in "Sum"
""
LemmaDoc add_comm as add_comm in "Nat"
""
LemmaDoc mul_add as mul_add in "Nat"
""
LemmaDoc add_mul as add_mul in "Nat"
""
LemmaDoc arithmetic_sum as arithmetic_sum in "Sum"
""
LemmaDoc add_pow_two as add_pow_two in "Nat"
""
2 years ago
LemmaDoc Finset.sum_comm as Finset.sum_comm in "Sum"
""
2 years ago
LemmaDoc Function.comp_apply as Function.comp_apply in "Function"
""
2 years ago
LemmaDoc not_le as not_le in "Logic"
""
LemmaDoc if_pos as if_pos in "Logic"
""
LemmaDoc if_neg as if_neg in "Logic"
""
2 years ago
LemmaDoc StrictMono.injective as StrictMono.injective in "Function"
""
LemmaDoc StrictMono.add as StrictMono.add in "Function"
""
LemmaDoc Odd.strictMono_pow as Odd.strictMono_pow in "Function"
""