Add more examples, homogenize() and change step function

main
Francesco Minnocci 1 year ago
parent fb2f68d7fa
commit 23b8ceb8b5
Signed by untrusted user: BachoSeven
GPG Key ID: 2BE4AB7FDAD828A4

@ -14,7 +14,9 @@ This is a project for the "Laboratorio Computazionale" exam at the University of
- Parallelization - Parallelization
- Extract functions in separate modules(?) - Extract functions in separate modules(?)
## Example system ## Example systems
Here's some tests on 2x2 systems, with the plotted real approximate solutions
$$ $$
\begin{align*} \begin{align*}
@ -23,6 +25,26 @@ xy - 1 &= 0 \\
\end{align*} \end{align*}
$$ $$
Plot of the approximate solutions: ![](solutions1.png)
---
$$
\begin{align*}
x^2 + y^2 - 2 &= 0 \\
xy - 1 &= 0 \\
\end{align*}
$$
![](solutions2.png)
---
$$
\begin{align*}
x^3 + 5x^2 - y - 10 &= 0 \\
2x^2 - y - 10 &= 0 \\
\end{align*}
$$
![](solutions.png) ![](solutions3.png)

58
hc.jl

@ -5,12 +5,20 @@ using Plots
# Define start system based on total degree # Define start system based on total degree
function start_system(F) function start_system(F)
degrees = [maxdegree(p) for p in F] degrees = [maxdegree(p) for p in F]
# @polyvar h
# G = [x_i^d - h^d for (d, x_i) in zip(degrees, variables(F))]
G = [x_i^d - 1 for (d, x_i) in zip(degrees, variables(F))] G = [x_i^d - 1 for (d, x_i) in zip(degrees, variables(F))]
r = [[exp(2im*pi/d)^k for k=0:d-1] for d in degrees] r = [[exp(2im*pi/d)^k for k=0:d-1] for d in degrees]
roots = collect(Iterators.product(r...)) # roots = vec([vcat(collect(root), 1) for root in collect(Iterators.product(r...))])
roots = vec([collect(root) for root in collect(Iterators.product(r...))])
return (G, roots) return (G, roots)
end end
function homogenize(F)
@polyvar h
return [sum([h^(maxdegree(p)-maxdegree(t))*t for t in p.terms]) for p in F]
end
# Define homotopy function # Define homotopy function
function homotopy(F, G) function homotopy(F, G)
γ = cis(2π * rand()) γ = cis(2π * rand())
@ -32,7 +40,7 @@ function en_step(H, x, t, step_size)
xp = x .+ Δx * step_size xp = x .+ Δx * step_size
# Corrector step # Corrector step
for _ in 1:5 for _ in 1:10
JH = [jh(vars=>xp) for jh in differentiate(H(t+step_size), vars)] JH = [jh(vars=>xp) for jh in differentiate(H(t+step_size), vars)]
Δx = JH \ -[h(vars=>xp) for h in H(t+step_size)] Δx = JH \ -[h(vars=>xp) for h in H(t+step_size)]
xp = xp .+ Δx xp = xp .+ Δx
@ -45,11 +53,14 @@ function en_step(H, x, t, step_size)
end end
# Adaptive step size # Adaptive step size
function adapt_step(H, x, t, step, m) function adapt_step(x, x_old, step, m)
Δ = LinearAlgebra.norm([h(variables(H(t))=>x) for h in H(t)]) Δ = LinearAlgebra.norm(x - x_old)
# function adapt_step(H, x, t, step, m)
# Δ = LinearAlgebra.norm([h(variables(H(t))=>x) for h in H(t)])
if Δ > 0.1 if Δ > 0.1
step = 0.5 * step step = 0.5 * step
elseif Δ < 0.001 m = 0
else
m+=1 m+=1
if (m == 5) if (m == 5)
step = 2 * step step = 2 * step
@ -61,20 +72,22 @@ function adapt_step(H, x, t, step, m)
end end
# Main homotopy continuation loop # Main homotopy continuation loop
function solve(F, maxsteps=10000) function solve(F, (G, roots) = start_system(F), maxsteps=10000)
(G, roots) = start_system(F) # F=homogenize(F)
H=homotopy(F,G) H=homotopy(F,G)
solutions = [] solutions = []
for r in roots for r in roots
t = 1.0 t = 1.0
step_size = 0.1 step_size = 0.01
x0 = r x0 = r
m = 0 m = 0
while t > 0 && maxsteps > 0 while t > 0 && maxsteps > 0
x0 = en_step(H, x0, t, step_size) x = en_step(H, x0, t, step_size)
(m, step_size) = adapt_step(H, x0, t, step_size, m) (m, step_size) = adapt_step(x, x0, step_size, m)
# (m, step_size) = adapt_step(H, x, t, step_size, m)
x0 = x
t -= step_size t -= step_size
maxsteps -= 1 maxsteps -= 1
end end
@ -84,20 +97,29 @@ function solve(F, maxsteps=10000)
return solutions return solutions
end end
function plot_real(solutions, F) function plot_real(solutions, F, h, v, name)
p=plot(xlim = (-3, 3), ylim = (-3, 3), aspect_ratio = :equal) p=plot(xlim = (-h, h), ylim = (-v, v), aspect_ratio = :equal)
contour!(-3:0.1:3, -3:0.1:3, (x,y)->F[1](variables(F)=>[x,y]), levels=[0], cbar=false, color=:cyan) contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[1](variables(F)=>[x,y]), levels=[0], cbar=false, color=:cyan)
contour!(-3:0.1:3, -3:0.1:3, (x,y)->F[2](variables(F)=>[x,y]), levels=[0], cbar=false, color=:green) contour!(-h:0.1:h, -v:0.1:v, (x,y)->F[2](variables(F)=>[x,y]), levels=[0], cbar=false, color=:green)
scatter!([real(sol[1]) for sol in solutions], [real(sol[2]) for sol in solutions], color = "red", label = "Solutions") scatter!([real(sol[1]) for sol in solutions], [real(sol[2]) for sol in solutions], color = "red", label = "Real solutions")
png("solutions") png("solutions" * name)
end end
# Input polynomial system # Input polynomial system
@polyvar x y @polyvar x y
F = [x*y - 1, x^2 + y^2 - 4] F = [x*y - 1, x^2 + y^2 - 4]
T = [x*y - 1, x^2 + y^2 - 2]
C = [x^3 - y + 5x^2 - 10, 2x^2 - y - 10]
P = [x*y - 1, x*y]
sF = solve(F) sF = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(F))
sT = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(T))
sC = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(C))
# sP = filter(u -> imag(u[1]) < 0.1 && imag(u[2]) < 0.1, solve(P))
# Plotting the system and the real solutions # Plotting the system and the real solutions
plot_real(sF, F) plot_real(sF, F, 4, 4, "1")
plot_real(sT, T, 4, 4, "2")
plot_real(sC, C, 6, 12, "3")
# plot_real(sP, P, 5, 5, "4")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Loading…
Cancel
Save