Shuffle test into tests
stopcriterion
Salvatore Filippone 17 years ago
parent e5111ceb7c
commit 71dc55ee80

@ -1,36 +0,0 @@
MLDDIR=../..
include $(MLDDIR)/Make.inc
PSBDIR=$(PSBLASDIR)/lib/
MLDLIBDIR=$(MLDDIR)/lib
MLD_LIB=-L$(MLDLIBDIR) -lmld_krylov -lmld_prec
PSBLAS_LIB= -L$(PSBDIR) -lpsb_util -lpsb_base
FINCLUDES=$(FMFLAG). $(FMFLAG)$(MLDLIBDIR) $(FMFLAG)$(PSBDIR) $(FIFLAG).
EXEDIR=./runs
all: ppde spde
ppde: ppde.o data_input.o
$(F90LINK) ppde.o data_input.o -o ppde $(MLD_LIB) $(PSBLAS_LIB) $(LDLIBS)
/bin/mv ppde $(EXEDIR)
spde: spde.o data_input.o
$(F90LINK) spde.o data_input.o -o spde $(MLD_LIB) $(PSBLAS_LIB) $(LDLIBS)
/bin/mv spde $(EXEDIR)
ppde.o spde.o: data_input.o
.f90.o:
$(MPF90) $(F90COPT) $(FINCLUDES) $(FDEFINES) -c $<
clean:
/bin/rm -f data_input.o ppde.o $(EXEDIR)/ppde spde.o $(EXEDIR)/spde
verycleanlib:
(cd ../..; make veryclean)
lib:
(cd ../../; make library)

@ -1,91 +0,0 @@
!!$
!!$
!!$ MLD2P4 version 1.0
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
!!$ based on PSBLAS (Parallel Sparse BLAS version 2.2)
!!$
!!$ (C) Copyright 2008
!!$
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari University of Rome Tor Vergata
!!$ Pasqua D'Ambra ICAR-CNR, Naples
!!$ Daniela di Serafino Second University of Naples
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the MLD2P4 group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
module data_input
interface read_data
module procedure read_char, read_int,&
& read_double, read_single
end interface read_data
contains
subroutine read_char(val,file)
character(len=*), intent(out) :: val
integer, intent(in) :: file
character(len=1024) :: charbuf
integer :: idx
read(file,'(a)')charbuf
charbuf = adjustl(charbuf)
idx=index(charbuf,"!")
read(charbuf(1:idx-1),'(a)') val
end subroutine read_char
subroutine read_int(val,file)
integer, intent(out) :: val
integer, intent(in) :: file
character(len=1024) :: charbuf
integer :: idx
read(file,'(a)')charbuf
charbuf = adjustl(charbuf)
idx=index(charbuf,"!")
read(charbuf(1:idx-1),*) val
end subroutine read_int
subroutine read_single(val,file)
use psb_base_mod
real(psb_spk_), intent(out) :: val
integer, intent(in) :: file
character(len=1024) :: charbuf
integer :: idx
read(file,'(a)')charbuf
charbuf = adjustl(charbuf)
idx=index(charbuf,"!")
read(charbuf(1:idx-1),*) val
end subroutine read_single
subroutine read_double(val,file)
use psb_base_mod
real(psb_dpk_), intent(out) :: val
integer, intent(in) :: file
character(len=1024) :: charbuf
integer :: idx
read(file,'(a)')charbuf
charbuf = adjustl(charbuf)
idx=index(charbuf,"!")
read(charbuf(1:idx-1),*) val
end subroutine read_double
end module data_input

@ -1,726 +0,0 @@
!!$
!!$ MLD2P4 version 1.0
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
!!$ based on PSBLAS (Parallel Sparse BLAS version 2.2)
!!$
!!$ (C) Copyright 2008
!!$
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari University of Rome Tor Vergata
!!$ Pasqua D'Ambra ICAR-CNR, Naples
!!$ Daniela di Serafino Second University of Naples
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: ppde.f90
!
! Program: ppde
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs.
!
!
! The PDE is a general second order equation in 3d
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u = 0
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
!
! Example taken from:
! C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to a BLOCK
! data distribution.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = exp(-x^2-y^2-z^2)
!
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
!
program ppde
use psb_base_mod
use mld_prec_mod
use psb_krylov_mod
use psb_util_mod
use data_input
implicit none
! input parameters
character(len=20) :: kmethd, ptype
character(len=5) :: afmt
integer :: idim
! miscellaneous
real(psb_dpk_), parameter :: one = 1.d0
real(psb_dpk_) :: t1, t2, tprec
! sparse matrix and preconditioner
type(psb_dspmat_type) :: a
type(mld_dprec_type) :: prec
! descriptor
type(psb_desc_type) :: desc_a
! dense matrices
real(psb_dpk_), allocatable :: b(:), x(:)
! blacs parameters
integer :: ictxt, iam, np
! solver parameters
integer :: iter, itmax,itrace, istopc, irst, nlv
real(psb_dpk_) :: err, eps
type precdata
character(len=20) :: descr ! verbose description of the prec
character(len=10) :: prec ! overall prectype
integer :: novr ! number of overlap layers
character(len=16) :: restr ! restriction over application of as
character(len=16) :: prol ! prolongation over application of as
character(len=16) :: solve ! Factorization type: ILU, SuperLU, UMFPACK.
integer :: fill1 ! Fill-in for factorization 1
real(psb_dpk_) :: thr1 ! Threshold for fact. 1 ILU(T)
integer :: nlev ! Number of levels in multilevel prec.
character(len=16) :: aggrkind ! smoothed/raw aggregatin
character(len=16) :: aggr_alg ! local or global aggregation
character(len=16) :: mltype ! additive or multiplicative 2nd level prec
character(len=16) :: smthpos ! side: pre, post, both smoothing
character(len=16) :: cmat ! coarse mat
character(len=16) :: csolve ! Coarse solver: bjac, umf, slu, sludist
character(len=16) :: csbsolve ! Coarse subsolver: ILU, ILU(T), SuperLU, UMFPACK.
integer :: cfill ! Fill-in for factorization 1
real(psb_dpk_) :: cthres ! Threshold for fact. 1 ILU(T)
integer :: cjswp ! Jacobi sweeps
real(psb_dpk_) :: athres ! smoother aggregation threshold
end type precdata
type(precdata) :: prectype
! other variables
integer :: info
character(len=20) :: name,ch_err
info=0
call psb_init(ictxt)
call psb_info(ictxt,iam,np)
if (iam < 0) then
! This should not happen, but just in case
call psb_exit(ictxt)
stop
endif
if(psb_get_errstatus() /= 0) goto 9999
name='pde90'
call psb_set_errverbosity(2)
!
! get parameters
!
call get_parms(ictxt,kmethd,prectype,afmt,idim,istopc,itmax,itrace,irst)
!
! allocate and fill in the coefficient matrix, rhs and initial guess
!
call psb_barrier(ictxt)
t1 = psb_wtime()
call create_matrix(idim,a,b,x,desc_a,part_block,ictxt,afmt,info)
t2 = psb_wtime() - t1
if(info /= 0) then
info=4010
ch_err='create_matrix'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_amx(ictxt,t2)
if (iam == psb_root_) write(*,'("Overall matrix creation time : ",es10.4)')t2
if (iam == psb_root_) write(*,'(" ")')
!
! prepare the preconditioner.
!
if (psb_toupper(prectype%prec) =='ML') then
nlv = prectype%nlev
else
nlv = 1
end if
call mld_precinit(prec,prectype%prec,info,nlev=nlv)
call mld_precset(prec,mld_sub_ovr_,prectype%novr,info)
call mld_precset(prec,mld_sub_restr_,prectype%restr,info)
call mld_precset(prec,mld_sub_prol_,prectype%prol,info)
call mld_precset(prec,mld_sub_solve_,prectype%solve,info)
call mld_precset(prec,mld_sub_fillin_,prectype%fill1,info)
call mld_precset(prec,mld_sub_iluthrs_,prectype%thr1,info)
if (psb_toupper(prectype%prec) =='ML') then
call mld_precset(prec,mld_aggr_kind_, prectype%aggrkind,info)
call mld_precset(prec,mld_aggr_alg_, prectype%aggr_alg,info)
call mld_precset(prec,mld_ml_type_, prectype%mltype, info)
call mld_precset(prec,mld_smoother_pos_, prectype%smthpos, info)
call mld_precset(prec,mld_aggr_thresh_, prectype%athres, info)
call mld_precset(prec,mld_coarse_solve_, prectype%csolve, info)
call mld_precset(prec,mld_coarse_subsolve_, prectype%csbsolve,info)
call mld_precset(prec,mld_coarse_mat_, prectype%cmat, info)
call mld_precset(prec,mld_coarse_fillin_, prectype%cfill, info)
call mld_precset(prec,mld_coarse_iluthrs_, prectype%cthres, info)
call mld_precset(prec,mld_coarse_sweeps_, prectype%cjswp, info)
end if
call psb_barrier(ictxt)
t1 = psb_wtime()
call mld_precbld(a,desc_a,prec,info)
if(info /= 0) then
info=4010
ch_err='psb_precbld'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tprec = psb_wtime()-t1
call psb_amx(ictxt,tprec)
if (iam == psb_root_) write(*,'("Preconditioner time : ",es10.4)')tprec
if (iam == psb_root_) call mld_precdescr(prec,info)
if (iam == psb_root_) write(*,'(" ")')
!
! iterative method parameters
!
if(iam == psb_root_) write(*,'("Calling iterative method ",a)')kmethd
call psb_barrier(ictxt)
t1 = psb_wtime()
eps = 1.d-9
call psb_krylov(kmethd,a,prec,b,x,eps,desc_a,info,&
& itmax=itmax,iter=iter,err=err,itrace=itrace,istop=istopc,irst=irst)
if(info /= 0) then
info=4010
ch_err='solver routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
call psb_amx(ictxt,t2)
if (iam == psb_root_) then
write(*,'(" ")')
write(*,'("Time to solve matrix : ",es10.4)')t2
write(*,'("Time per iteration : ",es10.4)')t2/iter
write(*,'("Number of iterations : ",i0)')iter
write(*,'("Convergence indicator on exit : ",es10.4)')err
write(*,'("Info on exit : ",i0)')info
end if
!
! cleanup storage and exit
!
call psb_gefree(b,desc_a,info)
call psb_gefree(x,desc_a,info)
call psb_spfree(a,desc_a,info)
call mld_precfree(prec,info)
call psb_cdfree(desc_a,info)
if(info /= 0) then
info=4010
ch_err='free routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
9999 continue
if(info /= 0) then
call psb_error(ictxt)
end if
call psb_exit(ictxt)
stop
contains
!
! get iteration parameters from the command line
!
subroutine get_parms(ictxt,kmethd,prectype,afmt,idim,istopc,itmax,itrace,irst)
integer :: ictxt
type(precdata) :: prectype
character(len=*) :: kmethd, afmt
integer :: idim, istopc,itmax,itrace,irst
integer :: np, iam, info
character(len=20) :: buffer
call psb_info(ictxt, iam, np)
if (iam==psb_root_) then
call read_data(kmethd,5)
call read_data(afmt,5)
call read_data(idim,5)
call read_data(istopc,5)
call read_data(itmax,5)
call read_data(itrace,5)
call read_data(irst,5)
call read_data(eps,5)
call read_data(prectype%descr,5) ! verbose description of the prec
call read_data(prectype%prec,5) ! overall prectype
call read_data(prectype%novr,5) ! number of overlap layers
call read_data(prectype%restr,5) ! restriction over application of as
call read_data(prectype%prol,5) ! prolongation over application of as
call read_data(prectype%solve,5) ! Factorization type: ILU, SuperLU, UMFPACK.
call read_data(prectype%fill1,5) ! Fill-in for factorization 1
call read_data(prectype%thr1,5) ! Threshold for fact. 1 ILU(T)
if (psb_toupper(prectype%prec) == 'ML') then
call read_data(prectype%nlev,5) ! Number of levels in multilevel prec.
call read_data(prectype%aggrkind,5) ! smoothed/raw aggregatin
call read_data(prectype%aggr_alg,5) ! local or global aggregation
call read_data(prectype%mltype,5) ! additive or multiplicative 2nd level prec
call read_data(prectype%smthpos,5) ! side: pre, post, both smoothing
call read_data(prectype%cmat,5) ! coarse mat
call read_data(prectype%csolve,5) ! Factorization type: ILU, SuperLU, UMFPACK.
call read_data(prectype%csbsolve,5) ! Factorization type: ILU, SuperLU, UMFPACK.
call read_data(prectype%cfill,5) ! Fill-in for factorization 1
call read_data(prectype%cthres,5) ! Threshold for fact. 1 ILU(T)
call read_data(prectype%cjswp,5) ! Jacobi sweeps
call read_data(prectype%athres,5) ! smoother aggr thresh
end if
end if
! broadcast parameters to all processors
call psb_bcast(ictxt,kmethd)
call psb_bcast(ictxt,afmt)
call psb_bcast(ictxt,idim)
call psb_bcast(ictxt,istopc)
call psb_bcast(ictxt,itmax)
call psb_bcast(ictxt,itrace)
call psb_bcast(ictxt,irst)
call psb_bcast(ictxt,prectype%descr) ! verbose description of the prec
call psb_bcast(ictxt,prectype%prec) ! overall prectype
call psb_bcast(ictxt,prectype%novr) ! number of overlap layers
call psb_bcast(ictxt,prectype%restr) ! restriction over application of as
call psb_bcast(ictxt,prectype%prol) ! prolongation over application of as
call psb_bcast(ictxt,prectype%solve) ! Factorization type: ILU, SuperLU, UMFPACK.
call psb_bcast(ictxt,prectype%fill1) ! Fill-in for factorization 1
call psb_bcast(ictxt,prectype%thr1) ! Threshold for fact. 1 ILU(T)
if (psb_toupper(prectype%prec) == 'ML') then
call psb_bcast(ictxt,prectype%nlev) ! Number of levels in multilevel prec.
call psb_bcast(ictxt,prectype%aggrkind) ! smoothed/raw aggregatin
call psb_bcast(ictxt,prectype%aggr_alg) ! local or global aggregation
call psb_bcast(ictxt,prectype%mltype) ! additive or multiplicative 2nd level prec
call psb_bcast(ictxt,prectype%smthpos) ! side: pre, post, both smoothing
call psb_bcast(ictxt,prectype%cmat) ! coarse mat
call psb_bcast(ictxt,prectype%csolve) ! Factorization type: ILU, SuperLU, UMFPACK.
call psb_bcast(ictxt,prectype%csbsolve) ! Factorization type: ILU, SuperLU, UMFPACK.
call psb_bcast(ictxt,prectype%cfill) ! Fill-in for factorization 1
call psb_bcast(ictxt,prectype%cthres) ! Threshold for fact. 1 ILU(T)
call psb_bcast(ictxt,prectype%cjswp) ! Jacobi sweeps
call psb_bcast(ictxt,prectype%athres) ! smoother aggr thresh
end if
if (iam==psb_root_) then
write(*,'("Solving matrix : ell1")')
write(*,'("Grid dimensions : ",i4,"x",i4,"x",i4)')idim,idim,idim
write(*,'("Number of processors : ",i0)') np
write(*,'("Data distribution : BLOCK")')
write(*,'("Preconditioner : ",a)') prectype%descr
write(*,'("Iterative method : ",a)') kmethd
write(*,'(" ")')
endif
return
end subroutine get_parms
!
! print an error message
!
subroutine pr_usage(iout)
integer :: iout
write(iout,*)'incorrect parameter(s) found'
write(iout,*)' usage: pde90 methd prec dim &
&[istop itmax itrace]'
write(iout,*)' where:'
write(iout,*)' methd: cgstab cgs rgmres bicgstabl'
write(iout,*)' prec : bjac diag none'
write(iout,*)' dim number of points along each axis'
write(iout,*)' the size of the resulting linear '
write(iout,*)' system is dim**3'
write(iout,*)' istop stopping criterion 1, 2 '
write(iout,*)' itmax maximum number of iterations [500] '
write(iout,*)' itrace <=0 (no tracing, default) or '
write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations '
end subroutine pr_usage
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine create_matrix(idim,a,b,xv,desc_a,parts,ictxt,afmt,info)
!
! discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u
! dxdx dydy dzdz dx dy dz
!
! = 0
!
! boundary condition: dirichlet
! 0< x,y,z<1
!
! u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+
! + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3
use psb_base_mod
implicit none
integer :: idim
integer, parameter :: nbmax=10
real(psb_dpk_), allocatable :: b(:),xv(:)
type(psb_desc_type) :: desc_a
integer :: ictxt, info
character :: afmt*5
interface
! .....user passed subroutine.....
subroutine parts(global_indx,n,np,pv,nv)
implicit none
integer, intent(in) :: global_indx, n, np
integer, intent(out) :: nv
integer, intent(out) :: pv(*)
end subroutine parts
end interface ! local variables
type(psb_dspmat_type) :: a
real(psb_dpk_) :: zt(nbmax),glob_x,glob_y,glob_z
integer :: m,n,nnz,glob_row
integer :: x,y,z,ia,indx_owner
integer :: np, iam
integer :: element
integer :: nv, inv
integer, allocatable :: irow(:),icol(:)
real(psb_dpk_), allocatable :: val(:)
integer, allocatable :: prv(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_dpk_) :: deltah
real(psb_dpk_),parameter :: rhs=0.d0,one=1.d0,zero=0.d0
real(psb_dpk_) :: t1, t2, t3, tins, tasb
real(psb_dpk_) :: a1, a2, a3, a4, b1, b2, b3
external :: a1, a2, a3, a4, b1, b2, b3
integer :: err_act
! common area
character(len=20) :: name, ch_err
info = 0
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
deltah = 1.d0/(idim-1)
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(0,'("Generating Matrix (size=",i0x,")...")')n
call psb_cdall(ictxt,desc_a,info,mg=n,parts=parts)
call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
call psb_geall(b,desc_a,info)
call psb_geall(xv,desc_a,info)
if(info /= 0) then
info=4010
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nbmax),irow(20*nbmax),&
&icol(20*nbmax),prv(np),stat=info)
if (info /= 0 ) then
info=4000
call psb_errpush(info,name)
goto 9999
endif
tins = 0.d0
call psb_barrier(ictxt)
t1 = psb_wtime()
! loop over rows belonging to current process in a block
! distribution.
! icol(1)=1
do glob_row = 1, n
call parts(glob_row,n,np,prv,nv)
do inv = 1, nv
indx_owner = prv(inv)
if (indx_owner == iam) then
! local matrix pointer
element=1
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
x = glob_row/(idim*idim)
else
x = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(x-1)*idim*idim),idim) == 0) then
y = (glob_row-(x-1)*idim*idim)/idim
else
y = (glob_row-(x-1)*idim*idim)/idim+1
endif
z = glob_row-(x-1)*idim*idim-(y-1)*idim
! glob_x, glob_y, glob_x coordinates
glob_x=x*deltah
glob_y=y*deltah
glob_z=z*deltah
! check on boundary points
zt(1) = 0.d0
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
if (x==1) then
val(element)=-b1(glob_x,glob_y,glob_z)&
& -a1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*(-val(element))
else
val(element)=-b1(glob_x,glob_y,glob_z)&
& -a1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-2)*idim*idim+(y-1)*idim+(z)
element=element+1
endif
! term depending on (x,y-1,z)
if (y==1) then
val(element)=-b2(glob_x,glob_y,glob_z)&
& -a2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b2(glob_x,glob_y,glob_z)&
& -a2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-2)*idim+(z)
element=element+1
endif
! term depending on (x,y,z-1)
if (z==1) then
val(element)=-b3(glob_x,glob_y,glob_z)&
& -a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b3(glob_x,glob_y,glob_z)&
& -a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-1)*idim+(z-1)
element=element+1
endif
! term depending on (x,y,z)
val(element)=2*b1(glob_x,glob_y,glob_z)&
& +2*b2(glob_x,glob_y,glob_z)&
& +2*b3(glob_x,glob_y,glob_z)&
& +a1(glob_x,glob_y,glob_z)&
& +a2(glob_x,glob_y,glob_z)&
& +a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-1)*idim+(z)
element=element+1
! term depending on (x,y,z+1)
if (z==idim) then
val(element)=-b1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-1)*idim+(z+1)
element=element+1
endif
! term depending on (x,y+1,z)
if (y==idim) then
val(element)=-b2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y)*idim+(z)
element=element+1
endif
! term depending on (x+1,y,z)
if (x<idim) then
val(element)=-b3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x)*idim*idim+(y-1)*idim+(z)
element=element+1
endif
irow(1:element-1)=glob_row
ia=glob_row
t3 = psb_wtime()
call psb_spins(element-1,irow,icol,val,a,desc_a,info)
if(info /= 0) exit
tins = tins + (psb_wtime()-t3)
call psb_geins(1,(/ia/),zt(1:1),b,desc_a,info)
if(info /= 0) exit
zt(1)=0.d0
call psb_geins(1,(/ia/),zt(1:1),xv,desc_a,info)
if(info /= 0) exit
end if
end do
end do
call psb_barrier(ictxt)
t2 = psb_wtime()-t1
if(info /= 0) then
info=4010
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call psb_barrier(ictxt)
tasb = psb_wtime()-t1
if(info /= 0) then
info=4010
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_amx(ictxt,t2)
call psb_amx(ictxt,tins)
call psb_amx(ictxt,tasb)
if(iam == psb_root_) then
write(*,'("The matrix has been generated and assembeld in ",a3," format.")')&
& a%fida(1:3)
write(*,'("-pspins time : ",es10.4)')tins
write(*,'("-insert time : ",es10.4)')t2
write(*,'("-assembly time : ",es10.4)')tasb
end if
call psb_geasb(b,desc_a,info)
call psb_geasb(xv,desc_a,info)
if(info /= 0) then
info=4010
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine create_matrix
end program ppde
!
! functions parametrizing the differential equation
!
function a1(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a1
real(psb_dpk_) :: x,y,z
a1=1.d0
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a2
real(psb_dpk_) :: x,y,z
a2=2.d1*y
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a3
real(psb_dpk_) :: x,y,z
a3=1.d0
end function a3
function a4(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: a4
real(psb_dpk_) :: x,y,z
a4=1.d0
end function a4
function b1(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b1
real(psb_dpk_) :: x,y,z
b1=1.d0
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b2
real(psb_dpk_) :: x,y,z
b2=1.d0
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_dpk_
real(psb_dpk_) :: b3
real(psb_dpk_) :: x,y,z
b3=1.d0
end function b3

@ -1,28 +0,0 @@
BICGSTAB ! Iterative method: BiCGSTAB BiCG CGS RGMRES BiCGSTABL CG
CSR ! Storage format CSR COO JAD
30 ! IDIM; domain size is idim**3
2 ! ISTOPC
00800 ! ITMAX
01 ! ITRACE
30 ! IRST (restart for RGMRES and BiCGSTABL)
1.d-6 ! EPS
3L-M-RAS-S-D4 ! Longer descriptive name for preconditioner (up to 20 chars)
ML ! Preconditioner NONE DIAG BJAC AS ML
0 ! Number of overlap layers for AS preconditioner at finest level
HALO ! Restriction operator NONE HALO
NONE ! Prolongation operator NONE SUM AVG
ILU ! Subdomain solver ILU MILU ILUT UMF SLU
1 ! Level-set N for ILU(N)
1.d-4 ! Threshold T for ILU(T,P)
3 ! Number of levels in a multilevel preconditioner
SMOOTH ! Kind of aggregation: RAW, SMOOTH
DEC ! Type of aggregation DEC SYMDEC GLB
MULT ! Type of multilevel correction: ADD MULT
POST ! Side of multiplicative correction PRE POST BOTH (ignored for ADD)
DIST ! Coarse level: matrix distribution DIST REPL
UMF ! Coarse level: solver BJAC UMF SLU SLUDIST
ILU ! Coarse level: subsolver ILU UMF SLU SLUDIST
0 ! Coarse level: Level-set N for ILU(N)
1.d-4 ! Coarse level: Threshold T for ILU(T,P)
4 ! Coarse level: Number of Jacobi sweeps
0.10d0 ! Smoother Aggregation Threshold: >= 0.0

@ -1,726 +0,0 @@
!!$
!!$ MLD2P4 version 1.0
!!$ MultiLevel Domain Decomposition Parallel Preconditioners Package
!!$ based on PSBLAS (Parallel Sparse BLAS version 2.2)
!!$
!!$ (C) Copyright 2008
!!$
!!$ Salvatore Filippone University of Rome Tor Vergata
!!$ Alfredo Buttari University of Rome Tor Vergata
!!$ Pasqua D'Ambra ICAR-CNR, Naples
!!$ Daniela di Serafino Second University of Naples
!!$
!!$ Redistribution and use in source and binary forms, with or without
!!$ modification, are permitted provided that the following conditions
!!$ are met:
!!$ 1. Redistributions of source code must retain the above copyright
!!$ notice, this list of conditions and the following disclaimer.
!!$ 2. Redistributions in binary form must reproduce the above copyright
!!$ notice, this list of conditions, and the following disclaimer in the
!!$ documentation and/or other materials provided with the distribution.
!!$ 3. The name of the PSBLAS group or the names of its contributors may
!!$ not be used to endorse or promote products derived from this
!!$ software without specific written permission.
!!$
!!$ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
!!$ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
!!$ TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
!!$ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE PSBLAS GROUP OR ITS CONTRIBUTORS
!!$ BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
!!$ CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
!!$ SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
!!$ INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
!!$ CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
!!$ ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
!!$ POSSIBILITY OF SUCH DAMAGE.
!!$
!!$
! File: ppde.f90
!
! Program: ppde
! This sample program solves a linear system obtained by discretizing a
! PDE with Dirichlet BCs.
!
!
! The PDE is a general second order equation in 3d
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u = 0
! dxdx dydy dzdz dx dy dz
!
! with Dirichlet boundary conditions, on the unit cube 0<=x,y,z<=1.
!
! Example taken from:
! C.T.Kelley
! Iterative Methods for Linear and Nonlinear Equations
! SIAM 1995
!
! In this sample program the index space of the discretized
! computational domain is first numbered sequentially in a standard way,
! then the corresponding vector is distributed according to a BLOCK
! data distribution.
!
! Boundary conditions are set in a very simple way, by adding
! equations of the form
!
! u(x,y) = exp(-x^2-y^2-z^2)
!
! Note that if a1=a2=a3=a4=0., the PDE is the well-known Laplace equation.
!
program spde
use psb_base_mod
use mld_prec_mod
use psb_krylov_mod
use psb_util_mod
use data_input
implicit none
! input parameters
character(len=20) :: kmethd, ptype
character(len=5) :: afmt
integer :: idim
! miscellaneous
real(psb_spk_), parameter :: one = 1.0
real(psb_dpk_) :: t1, t2, tprec
! sparse matrix and preconditioner
type(psb_sspmat_type) :: a
type(mld_sprec_type) :: prec
! descriptor
type(psb_desc_type) :: desc_a
! dense matrices
real(psb_spk_), allocatable :: b(:), x(:)
! blacs parameters
integer :: ictxt, iam, np
! solver parameters
integer :: iter, itmax,itrace, istopc, irst, nlv
real(psb_spk_) :: err, eps
type precdata
character(len=20) :: descr ! verbose description of the prec
character(len=10) :: prec ! overall prectype
integer :: novr ! number of overlap layers
character(len=16) :: restr ! restriction over application of as
character(len=16) :: prol ! prolongation over application of as
character(len=16) :: solve ! Factorization type: ILU, SuperLU, UMFPACK.
integer :: fill1 ! Fill-in for factorization 1
real(psb_spk_) :: thr1 ! Threshold for fact. 1 ILU(T)
integer :: nlev ! Number of levels in multilevel prec.
character(len=16) :: aggrkind ! smoothed/raw aggregatin
character(len=16) :: aggr_alg ! local or global aggregation
character(len=16) :: mltype ! additive or multiplicative 2nd level prec
character(len=16) :: smthpos ! side: pre, post, both smoothing
character(len=16) :: cmat ! coarse mat
character(len=16) :: csolve ! Coarse solver: bjac, umf, slu, sludist
character(len=16) :: csbsolve ! Coarse subsolver: ILU, ILU(T), SuperLU, UMFPACK.
integer :: cfill ! Fill-in for factorization 1
real(psb_spk_) :: cthres ! Threshold for fact. 1 ILU(T)
integer :: cjswp ! Jacobi sweeps
real(psb_spk_) :: athres ! smoother aggregation threshold
end type precdata
type(precdata) :: prectype
! other variables
integer :: info
character(len=20) :: name,ch_err
info=0
call psb_init(ictxt)
call psb_info(ictxt,iam,np)
if (iam < 0) then
! This should not happen, but just in case
call psb_exit(ictxt)
stop
endif
if(psb_get_errstatus() /= 0) goto 9999
name='pde90'
call psb_set_errverbosity(2)
!
! get parameters
!
call get_parms(ictxt,kmethd,prectype,afmt,idim,istopc,itmax,itrace,irst)
!
! allocate and fill in the coefficient matrix, rhs and initial guess
!
call psb_barrier(ictxt)
t1 = psb_wtime()
call create_matrix(idim,a,b,x,desc_a,part_block,ictxt,afmt,info)
t2 = psb_wtime() - t1
if(info /= 0) then
info=4010
ch_err='create_matrix'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_amx(ictxt,t2)
if (iam == psb_root_) write(*,'("Overall matrix creation time : ",es10.4)')t2
if (iam == psb_root_) write(*,'(" ")')
!
! prepare the preconditioner.
!
if (psb_toupper(prectype%prec) =='ML') then
nlv = prectype%nlev
else
nlv = 1
end if
call mld_precinit(prec,prectype%prec,info,nlev=nlv)
call mld_precset(prec,mld_sub_ovr_,prectype%novr,info)
call mld_precset(prec,mld_sub_restr_,prectype%restr,info)
call mld_precset(prec,mld_sub_prol_,prectype%prol,info)
call mld_precset(prec,mld_sub_solve_,prectype%solve,info)
call mld_precset(prec,mld_sub_fillin_,prectype%fill1,info)
call mld_precset(prec,mld_sub_iluthrs_,prectype%thr1,info)
if (psb_toupper(prectype%prec) =='ML') then
call mld_precset(prec,mld_aggr_kind_, prectype%aggrkind,info)
call mld_precset(prec,mld_aggr_alg_, prectype%aggr_alg,info)
call mld_precset(prec,mld_ml_type_, prectype%mltype, info)
call mld_precset(prec,mld_smoother_pos_, prectype%smthpos, info)
call mld_precset(prec,mld_aggr_thresh_, prectype%athres, info)
call mld_precset(prec,mld_coarse_solve_, prectype%csolve, info)
call mld_precset(prec,mld_coarse_subsolve_, prectype%csbsolve,info)
call mld_precset(prec,mld_coarse_mat_, prectype%cmat, info)
call mld_precset(prec,mld_coarse_fillin_, prectype%cfill, info)
call mld_precset(prec,mld_coarse_iluthrs_, prectype%cthres, info)
call mld_precset(prec,mld_coarse_sweeps_, prectype%cjswp, info)
end if
call psb_barrier(ictxt)
t1 = psb_wtime()
call mld_precbld(a,desc_a,prec,info)
if(info /= 0) then
info=4010
ch_err='psb_precbld'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
tprec = psb_wtime()-t1
call psb_amx(ictxt,tprec)
if (iam == psb_root_) write(*,'("Preconditioner time : ",es10.4)')tprec
if (iam == psb_root_) call mld_precdescr(prec,info)
if (iam == psb_root_) write(*,'(" ")')
!
! iterative method parameters
!
if(iam == psb_root_) write(*,'("Calling iterative method ",a)')kmethd
call psb_barrier(ictxt)
t1 = psb_wtime()
eps = 1.d-9
call psb_krylov(kmethd,a,prec,b,x,eps,desc_a,info,&
& itmax=itmax,iter=iter,err=err,itrace=itrace,istop=istopc,irst=irst)
if(info /= 0) then
info=4010
ch_err='solver routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_barrier(ictxt)
t2 = psb_wtime() - t1
call psb_amx(ictxt,t2)
if (iam == psb_root_) then
write(*,'(" ")')
write(*,'("Time to solve matrix : ",es10.4)')t2
write(*,'("Time per iteration : ",es10.4)')t2/iter
write(*,'("Number of iterations : ",i0)')iter
write(*,'("Convergence indicator on exit : ",es10.4)')err
write(*,'("Info on exit : ",i0)')info
end if
!
! cleanup storage and exit
!
call psb_gefree(b,desc_a,info)
call psb_gefree(x,desc_a,info)
call psb_spfree(a,desc_a,info)
call mld_precfree(prec,info)
call psb_cdfree(desc_a,info)
if(info /= 0) then
info=4010
ch_err='free routine'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
9999 continue
if(info /= 0) then
call psb_error(ictxt)
end if
call psb_exit(ictxt)
stop
contains
!
! get iteration parameters from the command line
!
subroutine get_parms(ictxt,kmethd,prectype,afmt,idim,istopc,itmax,itrace,irst)
integer :: ictxt
type(precdata) :: prectype
character(len=*) :: kmethd, afmt
integer :: idim, istopc,itmax,itrace,irst
integer :: np, iam, info
character(len=20) :: buffer
call psb_info(ictxt, iam, np)
if (iam==psb_root_) then
call read_data(kmethd,5)
call read_data(afmt,5)
call read_data(idim,5)
call read_data(istopc,5)
call read_data(itmax,5)
call read_data(itrace,5)
call read_data(irst,5)
call read_data(eps,5)
call read_data(prectype%descr,5) ! verbose description of the prec
call read_data(prectype%prec,5) ! overall prectype
call read_data(prectype%novr,5) ! number of overlap layers
call read_data(prectype%restr,5) ! restriction over application of as
call read_data(prectype%prol,5) ! prolongation over application of as
call read_data(prectype%solve,5) ! Factorization type: ILU, SuperLU, UMFPACK.
call read_data(prectype%fill1,5) ! Fill-in for factorization 1
call read_data(prectype%thr1,5) ! Threshold for fact. 1 ILU(T)
if (psb_toupper(prectype%prec) == 'ML') then
call read_data(prectype%nlev,5) ! Number of levels in multilevel prec.
call read_data(prectype%aggrkind,5) ! smoothed/raw aggregatin
call read_data(prectype%aggr_alg,5) ! local or global aggregation
call read_data(prectype%mltype,5) ! additive or multiplicative 2nd level prec
call read_data(prectype%smthpos,5) ! side: pre, post, both smoothing
call read_data(prectype%cmat,5) ! coarse mat
call read_data(prectype%csolve,5) ! Factorization type: ILU, SuperLU, UMFPACK.
call read_data(prectype%csbsolve,5) ! Factorization type: ILU, SuperLU, UMFPACK.
call read_data(prectype%cfill,5) ! Fill-in for factorization 1
call read_data(prectype%cthres,5) ! Threshold for fact. 1 ILU(T)
call read_data(prectype%cjswp,5) ! Jacobi sweeps
call read_data(prectype%athres,5) ! smoother aggr thresh
end if
end if
! broadcast parameters to all processors
call psb_bcast(ictxt,kmethd)
call psb_bcast(ictxt,afmt)
call psb_bcast(ictxt,idim)
call psb_bcast(ictxt,istopc)
call psb_bcast(ictxt,itmax)
call psb_bcast(ictxt,itrace)
call psb_bcast(ictxt,irst)
call psb_bcast(ictxt,prectype%descr) ! verbose description of the prec
call psb_bcast(ictxt,prectype%prec) ! overall prectype
call psb_bcast(ictxt,prectype%novr) ! number of overlap layers
call psb_bcast(ictxt,prectype%restr) ! restriction over application of as
call psb_bcast(ictxt,prectype%prol) ! prolongation over application of as
call psb_bcast(ictxt,prectype%solve) ! Factorization type: ILU, SuperLU, UMFPACK.
call psb_bcast(ictxt,prectype%fill1) ! Fill-in for factorization 1
call psb_bcast(ictxt,prectype%thr1) ! Threshold for fact. 1 ILU(T)
if (psb_toupper(prectype%prec) == 'ML') then
call psb_bcast(ictxt,prectype%nlev) ! Number of levels in multilevel prec.
call psb_bcast(ictxt,prectype%aggrkind) ! smoothed/raw aggregatin
call psb_bcast(ictxt,prectype%aggr_alg) ! local or global aggregation
call psb_bcast(ictxt,prectype%mltype) ! additive or multiplicative 2nd level prec
call psb_bcast(ictxt,prectype%smthpos) ! side: pre, post, both smoothing
call psb_bcast(ictxt,prectype%cmat) ! coarse mat
call psb_bcast(ictxt,prectype%csolve) ! Factorization type: ILU, SuperLU, UMFPACK.
call psb_bcast(ictxt,prectype%csbsolve) ! Factorization type: ILU, SuperLU, UMFPACK.
call psb_bcast(ictxt,prectype%cfill) ! Fill-in for factorization 1
call psb_bcast(ictxt,prectype%cthres) ! Threshold for fact. 1 ILU(T)
call psb_bcast(ictxt,prectype%cjswp) ! Jacobi sweeps
call psb_bcast(ictxt,prectype%athres) ! smoother aggr thresh
end if
if (iam==psb_root_) then
write(*,'("Solving matrix : ell1")')
write(*,'("Grid dimensions : ",i4,"x",i4,"x",i4)')idim,idim,idim
write(*,'("Number of processors : ",i0)') np
write(*,'("Data distribution : BLOCK")')
write(*,'("Preconditioner : ",a)') prectype%descr
write(*,'("Iterative method : ",a)') kmethd
write(*,'(" ")')
endif
return
end subroutine get_parms
!
! print an error message
!
subroutine pr_usage(iout)
integer :: iout
write(iout,*)'incorrect parameter(s) found'
write(iout,*)' usage: pde90 methd prec dim &
&[istop itmax itrace]'
write(iout,*)' where:'
write(iout,*)' methd: cgstab cgs rgmres bicgstabl'
write(iout,*)' prec : bjac diag none'
write(iout,*)' dim number of points along each axis'
write(iout,*)' the size of the resulting linear '
write(iout,*)' system is dim**3'
write(iout,*)' istop stopping criterion 1, 2 '
write(iout,*)' itmax maximum number of iterations [500] '
write(iout,*)' itrace <=0 (no tracing, default) or '
write(iout,*)' >= 1 do tracing every itrace'
write(iout,*)' iterations '
end subroutine pr_usage
!
! subroutine to allocate and fill in the coefficient matrix and
! the rhs.
!
subroutine create_matrix(idim,a,b,xv,desc_a,parts,ictxt,afmt,info)
!
! discretize the partial diferential equation
!
! b1 dd(u) b2 dd(u) b3 dd(u) a1 d(u) a2 d(u) a3 d(u)
! - ------ - ------ - ------ - ----- - ------ - ------ + a4 u
! dxdx dydy dzdz dx dy dz
!
! = 0
!
! boundary condition: dirichlet
! 0< x,y,z<1
!
! u(x,y,z)(2b1+2b2+2b3+a1+a2+a3)+u(x-1,y,z)(-b1-a1)+u(x,y-1,z)(-b2-a2)+
! + u(x,y,z-1)(-b3-a3)-u(x+1,y,z)b1-u(x,y+1,z)b2-u(x,y,z+1)b3
use psb_base_mod
implicit none
integer :: idim
integer, parameter :: nbmax=10
real(psb_spk_), allocatable :: b(:),xv(:)
type(psb_desc_type) :: desc_a
integer :: ictxt, info
character :: afmt*5
interface
! .....user passed subroutine.....
subroutine parts(global_indx,n,np,pv,nv)
implicit none
integer, intent(in) :: global_indx, n, np
integer, intent(out) :: nv
integer, intent(out) :: pv(*)
end subroutine parts
end interface ! local variables
type(psb_sspmat_type) :: a
real(psb_spk_) :: zt(nbmax),glob_x,glob_y,glob_z
integer :: m,n,nnz,glob_row
integer :: x,y,z,ia,indx_owner
integer :: np, iam
integer :: element
integer :: nv, inv
integer, allocatable :: irow(:),icol(:)
real(psb_spk_), allocatable :: val(:)
integer, allocatable :: prv(:)
! deltah dimension of each grid cell
! deltat discretization time
real(psb_spk_) :: deltah
real(psb_spk_),parameter :: rhs=0.0,one=1.0,zero=0.0
real(psb_dpk_) :: t1, t2, t3, tins, tasb
real(psb_spk_) :: a1, a2, a3, a4, b1, b2, b3
external :: a1, a2, a3, a4, b1, b2, b3
integer :: err_act
! common area
character(len=20) :: name, ch_err
info = 0
name = 'create_matrix'
call psb_erractionsave(err_act)
call psb_info(ictxt, iam, np)
deltah = 1.0/(idim-1)
! initialize array descriptor and sparse matrix storage. provide an
! estimate of the number of non zeroes
m = idim*idim*idim
n = m
nnz = ((n*9)/(np))
if(iam == psb_root_) write(0,'("Generating Matrix (size=",i0x,")...")')n
call psb_cdall(ictxt,desc_a,info,mg=n,parts=parts)
call psb_spall(a,desc_a,info,nnz=nnz)
! define rhs from boundary conditions; also build initial guess
call psb_geall(b,desc_a,info)
call psb_geall(xv,desc_a,info)
if(info /= 0) then
info=4010
ch_err='allocation rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
! we build an auxiliary matrix consisting of one row at a
! time; just a small matrix. might be extended to generate
! a bunch of rows per call.
!
allocate(val(20*nbmax),irow(20*nbmax),&
&icol(20*nbmax),prv(np),stat=info)
if (info /= 0 ) then
info=4000
call psb_errpush(info,name)
goto 9999
endif
tins = 0.d0
call psb_barrier(ictxt)
t1 = psb_wtime()
! loop over rows belonging to current process in a block
! distribution.
! icol(1)=1
do glob_row = 1, n
call parts(glob_row,n,np,prv,nv)
do inv = 1, nv
indx_owner = prv(inv)
if (indx_owner == iam) then
! local matrix pointer
element=1
! compute gridpoint coordinates
if (mod(glob_row,(idim*idim)) == 0) then
x = glob_row/(idim*idim)
else
x = glob_row/(idim*idim)+1
endif
if (mod((glob_row-(x-1)*idim*idim),idim) == 0) then
y = (glob_row-(x-1)*idim*idim)/idim
else
y = (glob_row-(x-1)*idim*idim)/idim+1
endif
z = glob_row-(x-1)*idim*idim-(y-1)*idim
! glob_x, glob_y, glob_x coordinates
glob_x=x*deltah
glob_y=y*deltah
glob_z=z*deltah
! check on boundary points
zt(1) = 0.d0
! internal point: build discretization
!
! term depending on (x-1,y,z)
!
if (x==1) then
val(element)=-b1(glob_x,glob_y,glob_z)&
& -a1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*(-val(element))
else
val(element)=-b1(glob_x,glob_y,glob_z)&
& -a1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-2)*idim*idim+(y-1)*idim+(z)
element=element+1
endif
! term depending on (x,y-1,z)
if (y==1) then
val(element)=-b2(glob_x,glob_y,glob_z)&
& -a2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b2(glob_x,glob_y,glob_z)&
& -a2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-2)*idim+(z)
element=element+1
endif
! term depending on (x,y,z-1)
if (z==1) then
val(element)=-b3(glob_x,glob_y,glob_z)&
& -a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b3(glob_x,glob_y,glob_z)&
& -a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-1)*idim+(z-1)
element=element+1
endif
! term depending on (x,y,z)
val(element)=2*b1(glob_x,glob_y,glob_z)&
& +2*b2(glob_x,glob_y,glob_z)&
& +2*b3(glob_x,glob_y,glob_z)&
& +a1(glob_x,glob_y,glob_z)&
& +a2(glob_x,glob_y,glob_z)&
& +a3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-1)*idim+(z)
element=element+1
! term depending on (x,y,z+1)
if (z==idim) then
val(element)=-b1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b1(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y-1)*idim+(z+1)
element=element+1
endif
! term depending on (x,y+1,z)
if (y==idim) then
val(element)=-b2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
zt(1) = exp(-glob_y**2-glob_z**2)*exp(-glob_x)*(-val(element))
else
val(element)=-b2(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x-1)*idim*idim+(y)*idim+(z)
element=element+1
endif
! term depending on (x+1,y,z)
if (x<idim) then
val(element)=-b3(glob_x,glob_y,glob_z)
val(element) = val(element)/(deltah*&
& deltah)
icol(element)=(x)*idim*idim+(y-1)*idim+(z)
element=element+1
endif
irow(1:element-1)=glob_row
ia=glob_row
t3 = psb_wtime()
call psb_spins(element-1,irow,icol,val,a,desc_a,info)
if(info /= 0) exit
tins = tins + (psb_wtime()-t3)
call psb_geins(1,(/ia/),zt(1:1),b,desc_a,info)
if(info /= 0) exit
zt(1)=0.d0
call psb_geins(1,(/ia/),zt(1:1),xv,desc_a,info)
if(info /= 0) exit
end if
end do
end do
call psb_barrier(ictxt)
t2 = psb_wtime()-t1
if(info /= 0) then
info=4010
ch_err='insert rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
deallocate(val,irow,icol)
t1 = psb_wtime()
call psb_cdasb(desc_a,info)
call psb_spasb(a,desc_a,info,dupl=psb_dupl_err_,afmt=afmt)
call psb_barrier(ictxt)
tasb = psb_wtime()-t1
if(info /= 0) then
info=4010
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_amx(ictxt,t2)
call psb_amx(ictxt,tins)
call psb_amx(ictxt,tasb)
if(iam == psb_root_) then
write(*,'("The matrix has been generated and assembeld in ",a3," format.")')&
& a%fida(1:3)
write(*,'("-pspins time : ",es10.4)')tins
write(*,'("-insert time : ",es10.4)')t2
write(*,'("-assembly time : ",es10.4)')tasb
end if
call psb_geasb(b,desc_a,info)
call psb_geasb(xv,desc_a,info)
if(info /= 0) then
info=4010
ch_err='asb rout.'
call psb_errpush(info,name,a_err=ch_err)
goto 9999
end if
call psb_erractionrestore(err_act)
return
9999 continue
call psb_erractionrestore(err_act)
if (err_act == psb_act_abort_) then
call psb_error(ictxt)
return
end if
return
end subroutine create_matrix
end program spde
!
! functions parametrizing the differential equation
!
function a1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a1
real(psb_spk_) :: x,y,z
a1=1.e0
end function a1
function a2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a2
real(psb_spk_) :: x,y,z
a2=2.e1*y
end function a2
function a3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a3
real(psb_spk_) :: x,y,z
a3=1.e0
end function a3
function a4(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: a4
real(psb_spk_) :: x,y,z
a4=1.e0
end function a4
function b1(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b1
real(psb_spk_) :: x,y,z
b1=1.e0
end function b1
function b2(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b2
real(psb_spk_) :: x,y,z
b2=1.e0
end function b2
function b3(x,y,z)
use psb_base_mod, only : psb_spk_
real(psb_spk_) :: b3
real(psb_spk_) :: x,y,z
b3=1.e0
end function b3
Loading…
Cancel
Save