fix(algebrario): sostituisce tab con spazi

main
parent 35ff43fc0f
commit ae25a87bd2

@ -12,18 +12,18 @@
Dacché $f(x)$ è irriducibile, $\FFpp/((f(x))$ è un
campo con $p^n$ elementi, ed è quindi isomorfo
a $\FFpn$. \\
Sia $\alpha = x + (f(x))$ una radice di $f(x)$
in $\FFpn$. Dal momento che $f(x)$ è irriducibile in
$\FFpp$, esso è il polinomio minimo di $\alpha$. Tuttavia,
poiché $\alpha \in \FFpn$, $\alpha$ è anche radice
di $x^{p^n}-x$. Pertanto si deduce che $f(x)$ divide
$x^{p^n}-x$. \\
Dunque, poiché $x^{p^n}-x$ in $\FFpn$ è prodotto di
fattori lineari, tutte le radici di $f(x)$ sono già
in $\FFpn$. \\
Inoltre, $\FFpn$ è il più piccolo sottocampo contenente
$\alpha$, dacché $\FFpn \cong \FFpp/(f(x)) \cong \FFpp(\alpha)$.
Quindi si deduce che $\FFpn$ è un campo di spezzamento per
@ -35,39 +35,39 @@
Sia $f(x)$ un irriducibile di grado $n$ su $\FFpp[x]$ e sia $\alpha$
una sua radice in $\FFpn$. Allora $f(\Frobexp^k(\alpha))=0$, $\forall k \geq 0$
\footnote{$\Frob$ è l'omomorfismo di Frobenius, definito come $\Frob : \FFpp \to \FFpp$,
$a \mapsto a^p$.}.
$a \mapsto a^p$.}.
\end{lemma}
\begin{proof} Sia $f(x) = a_n x^n + \ldots + a_0$ a coefficienti in $\FFpp$.
Si dimostra la tesi applicando il principio di induzione su $k$. \\
\ (\textit{passo base})\; $f(\Frobexp^0(\alpha))=f(\alpha)=0$. \\
\ (\textit{passo induttivo})\; Per l'ipotesi induttiva, $f(\Frobexp^{k-1}(\alpha))=0$.
Allora, si verifica algebricamente che:
\begin{multline*}
f(\Frobexp^k(\alpha)) = a_n (\Frobexp^k(\alpha))^n + \ldots + a_0 =
\Frob(a_n) \Frob((\Frobexp^{k-1}(\alpha))^n) + \ldots + \Frob(a_0) = \\
\Frob(f(\Frobexp^{k-1}(\alpha))) = \Frob(0) = 0,
\end{multline*}
\vskip 0.1in
dove si è usato che $\Frob(a_i) = a_i$, $\forall 0 \leq i \leq n$, dacché
ogni elemento di $\FFpp$ è radice di $x^p-x$.
Allora, si verifica algebricamente che:
\begin{multline*}
f(\Frobexp^k(\alpha)) = a_n (\Frobexp^k(\alpha))^n + \ldots + a_0 =
\Frob(a_n) \Frob((\Frobexp^{k-1}(\alpha))^n) + \ldots + \Frob(a_0) = \\
\Frob(f(\Frobexp^{k-1}(\alpha))) = \Frob(0) = 0,
\end{multline*}
\vskip 0.1in
dove si è usato che $\Frob(a_i) = a_i$, $\forall 0 \leq i \leq n$, dacché
ogni elemento di $\FFpp$ è radice di $x^p-x$.
\end{proof}
\begin{theorem}
Sia $f(x)$ un irriducibile di grado $n$ su $\FFpp[x]$ e sia $\alpha$ una
sua radice in $\FFpn$. Allora vale la seguente fattorizzazione
in $\FFpn$:
\[ f(x) = \prod_{i=0}^{n-1} \left(x - \alpha^{p^i}\right) = \prod_{i=0}^{n-1} \left(x - \Frobexp^i(\alpha)\right), \]
\vskip 0.1in
dove ogni fattore non è associato.
\end{theorem}
@ -75,19 +75,19 @@
Si verifica innanzitutto che vale chiaramente che $\alpha^{p^i} = \Frobexp^i(\alpha)$.
Dal momento che $\alpha$ è radice, allora ogni $\alpha^{p^i}$ lo è, per il
\lemref{lem:frobexp}. \\
Affinché tutti i fattori della moltiplicazione non siano associati è sufficiente
dimostrare che $n$ è il più piccolo esponente $j$ per cui $\Frobexp^j(\alpha)=\alpha$.
Infatti, siano $\Frobexp^i(\alpha)=\Frobexp^j(\alpha)$ con $0\leq j < i < n$, allora,
applicando più volte $\Frob$, si ricava che:
\[ \Frobexp^n(\alpha)=\Frobexp^{j+n-i}(\alpha) \implies \Frobexp^{j+n-i}(\alpha)=
\alpha, \]
\vskip 0.1in
che è assurdo, dacché $j < i < n \implies j+n-i < n$, \Lightning{}. \\
Innanzitutto, si verifica che $\Frobexp^{n}(\alpha)=\alpha^{p^n}=\alpha$, dacché
$\alpha \in \FFpn$. Infine, sia $t$ il più piccolo esponente $j$ per cui
$\Frobexp^j(\alpha)=\alpha$. Se $j$ fosse minore di $n$, $\alpha$ sarebbe
@ -107,17 +107,17 @@
\begin{proof} Sia $s \in \NN$ tale che $n=ds$.
Si verifica la tesi applicando il principio di induzione su $k \in \NN$. \\
\ (\textit{passo base})\; Per ipotesi, $\alpha^{p^d}=\alpha$. \\
\ (\textit{passo induttivo})\; Per ipotesi induttiva, $\alpha^{p^{(k-1)d}}=\alpha$. Allora si ricava che:
\[ \alpha^{p^{(k-1)d}}=\alpha \implies \alpha^{p^{kd}}=\alpha^{p^d}=\alpha. \]
\vskip 0.1in
In particolare, $\alpha^{p^n} = \alpha^{p^{ds}} = \alpha$, da cui la tesi.
\end{proof}
\begin{theorem}
@ -129,24 +129,24 @@
Si dimostrano le due implicazioni separatamente. \\
\ ($\implies$)\; Dal momento che $\FFpm \subseteq \FFpn$,
si ricava la seguente catena di estensioni:
\[ \FFpp \subseteq \FFpm \subseteq \FFpn, \]
\vskip 0.1in
dalla quale, applicando il \textit{Teorema delle Torri Algebriche},
si desume la seguente equazione:
\[ \underbrace{[\FFpn : \FFpp]}_n = [\FFpn : \FFpm] \underbrace{[\FFpm : \FFpp]}_d, \]
e quindi che $m$ divide $n$. \\
si ricava la seguente catena di estensioni:
\[ \FFpp \subseteq \FFpm \subseteq \FFpn, \]
\vskip 0.1in
dalla quale, applicando il \textit{Teorema delle Torri Algebriche},
si desume la seguente equazione:
\[ \underbrace{[\FFpn : \FFpp]}_n = [\FFpn : \FFpm] \underbrace{[\FFpm : \FFpp]}_d, \]
e quindi che $m$ divide $n$. \\
\ ($\,\Longleftarrow\,\,$)\; Sia $m \mid n$. Si consideri $\alpha \in \FFpm$. $\alpha$
è sicuramente radice di $x^{p^m}-x$, e poiché $m$ divide $n$, è
anche radice di $x^{p^n}-x$, per il \lemref{lem:alpha_radice}. Allora
$\alpha$ appartiene al campo di spezzamento di $x^{p^n}-x$ su $\FFpp$,
ossia $\FFpn$. Pertanto $\FFpm \subseteq \FFpn$. \\
è sicuramente radice di $x^{p^m}-x$, e poiché $m$ divide $n$, è
anche radice di $x^{p^n}-x$, per il \lemref{lem:alpha_radice}. Allora
$\alpha$ appartiene al campo di spezzamento di $x^{p^n}-x$ su $\FFpp$,
ossia $\FFpn$. Pertanto $\FFpm \subseteq \FFpn$. \\
\end{proof}
\begin{corollary}
@ -159,14 +159,14 @@
che ne contenga tutte le radici, ossia il più piccolo campo che contenga
$\FFp{m_1}$, $\FFp{m_2}$, $\ldots,\, \FFp{m_n}$. Si dimostra che tale campo
è proprio $\FFp{k}$. \\
Innanzitutto $\FFp{k}$, per il \thref{th:inclusione}, contiene tutti i campi di spezzamento dei fattori irriducibili di $f(x)$, dacché $m_i$ divide $k$ $\forall 1 \leq i \leq n$. \\
Sia supponga esista adesso un altro campo $\FFp{t} \subseteq \FFp{k}$ con tutte le
radici. Sicuramente $t \mid k$, per il \thref{th:inclusione}. Inoltre, dal momento
che dovrebbe includere ogni campo $\FFp{m_i}$, sempre per il \thref{th:inclusione},
$m_i$ divide $t$ $\forall 1 \leq i \leq n$. \\
Allora $t$ è un multiplo comune di tutti i $m_i$, e quindi $k$, in quanto minimo
comune multiplo, lo divide. Si conclude allora che $t = k$, e quindi che
$\FFp{k}$ è un campo di spezzamento di $f(x)$.
@ -181,23 +181,23 @@
La proposizione è equivalente a affermare che ogni polinomio irriducibile in $\FFpp$
ha grado divisore di $n$ se e solo se divide $x^{p^n}-x$. Si dimostrano le
due implicazioni separatamente. \\
\ ($\implies$)\; Sia $f(x)$ un polinomio irriducibile in $\FFpp$ di grado $d$, con
$d \mid n$. Si consideri allora il campo $\FFpd \cong \FFpp/(f(x))$, e
sia $\alpha$ una radice di $f(x)$ in tale campo. \\
Per il \lemref{lem:alpha_radice} si verifica che $\alpha$ è anche una radice
di $x^{p^n}-x$. Poiché $f(x)$ è irriducibile, esso è il polinomio minimo
di $\alpha$, e quindi si deduce che $f(x)$ divide $x^{p^n}-x$. \\
$d \mid n$. Si consideri allora il campo $\FFpd \cong \FFpp/(f(x))$, e
sia $\alpha$ una radice di $f(x)$ in tale campo. \\
Per il \lemref{lem:alpha_radice} si verifica che $\alpha$ è anche una radice
di $x^{p^n}-x$. Poiché $f(x)$ è irriducibile, esso è il polinomio minimo
di $\alpha$, e quindi si deduce che $f(x)$ divide $x^{p^n}-x$. \\
\ ($\,\Longleftarrow\,\,$)\; Sia $f(x)$ un polinomio irriducibile in $\FFpp$ di grado
$d$ che divide $x^{p^n}-x$. Si consideri allora il campo $\FFpd \cong \FFpp/(f(x))$,
e sia $\alpha$ una radice di $f(x)$ in tale campo. Allora $\FFpd \cong
$d$ che divide $x^{p^n}-x$. Si consideri allora il campo $\FFpd \cong \FFpp/(f(x))$,
e sia $\alpha$ una radice di $f(x)$ in tale campo. Allora $\FFpd \cong
\FFpp(\alpha)$, dacché $f(x)$, in quanto irriducibile, è il polinomio minimo
di $\alpha$. \\
Dacché $f(x)$ divide $x^{p^n}-x$, $\alpha$ è anche una radice
di $x^{p^n}-x$, e quindi che $\alpha \in \FFpn$. Dal momento che chiaramente
anche $\FFpp \subseteq \FFpn$, si deduce che $\FFpd \cong \FFpp(\alpha) \subseteq
di $\alpha$. \\
Dacché $f(x)$ divide $x^{p^n}-x$, $\alpha$ è anche una radice
di $x^{p^n}-x$, e quindi che $\alpha \in \FFpn$. Dal momento che chiaramente
anche $\FFpp \subseteq \FFpn$, si deduce che $\FFpd \cong \FFpp(\alpha) \subseteq
\FFpn$. Allora, per il \thref{th:inclusione}, $d$ divide $n$.
\end{proof}

@ -399,7 +399,7 @@ seguente teorema.
\[ [A(\beta_1, \beta_2, \ldots, \beta_{n-1})(\beta_n) : A(\beta_1, \beta_2, \ldots, \beta_{n-1})] = \deg p(x) \leq
\deg f(x) = [A(\beta_n) : A]. \]
\vskip 0.1in
Poiché $[A(\beta_n) : A]$ è finito, anche $[A(\beta_1, \beta_2, \ldots, \beta_{n-1})(\beta_n) : A(\beta_1, \beta_2, \ldots, \beta_{n-1})]$ lo è. \\
@ -453,19 +453,19 @@ seguente teorema.
$A(\alpha^2)$, ossia $[A(\alpha) : A(\alpha^2)]$. Poiché $\alpha$ è
radice del polinomio $x^2 - \alpha^2$ in $A(\alpha^2)$, si deduce
che tale grado è al più $2$. \\
Si applichi il \nameref{th:torri} alla catena di estensioni
$A \subseteq A(\alpha^2) \subseteq A(\alpha)$:
\[ [A(\alpha) : A] = \underbrace{[A(\alpha) : A(\alpha^2)]}_{\leq 2} [A(\alpha^2) : A]. \]
\vskip 0.1in
Se $[A(\alpha) : A(\alpha^2)]$ fosse $2$, $[A(\alpha) : A]$ sarebbe
pari, \Lightning{}. Pertanto $[A(\alpha) : A(\alpha^2)] = 1$, da
cui si ricava che $[A(\alpha) : A] = [A(\alpha^2) : A]$, ossia
che $A(\alpha^2)$ ha la stessa dimensione di $A(\alpha)$ su $A$. \\
Dal momento che $A(\alpha^2)$ è un sottospazio vettoriale di $A(\alpha)$,
avere la sua stessa dimensione equivale a coincidere con lo spazio
stesso. Si conclude allora che $A(\alpha^2) = A(\alpha)$.
@ -476,7 +476,7 @@ seguente teorema.
facilmente ad un esponente $n$ qualsiasi, finché sia data come ipotesi
la non divisibilità di $[A(\alpha) : A]$ per nessun numero primo
minore o uguale di $n$. \\
Si può infatti considerare, per
la dimostrazione generale, il polinomio $x^n - \alpha^n$, la cui
esistenza implica che $[A(\alpha) : A(\alpha^n)]$ sia minore

Binary file not shown.
Loading…
Cancel
Save